1,552 research outputs found

    Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo

    Get PDF
    The generation of sensory and autonomic neurons from the neural crest requires the functions of two classes of basic helix-loop-helix (bHLH) transcription factors, the Neurogenins (NGNs) and MASH-1, respectively (Fode, C., Gradwohl, G., Morin, X., Dierich, A., LeMeur, M., Goridis, C. and Guillemot, F. (1998) Neuron 20, 483-494; Guillemot, F., Lo, L.-C., Johnson, J. E., Auerbach, A., Anderson, D. J. and Joyner, A. L. (1993) Cell 75, 463-476; Ma, Q., Chen, Z. F., Barrantes, I. B., de la Pompa, J. L. and Anderson, D. J. (1998 Neuron 20, 469-482). We have cloned two chick NGNs and found that they are expressed in a subset of neural crest cells early in their migration. Ectopic expression of the NGNs in vivo biases migrating neural crest cells to localize in the sensory ganglia, and induces the expression of sensory neuron-appropriate markers in non-sensory crest derivatives. Surprisingly, the NGNs can also induce the expression of multiple pan-neuronal and sensory-specific markers in the dermomyotome, a mesodermal derivative. Taken together, these data suggest that a subset of neural crest cells may already be specified for a sensory neuron fate early in migration, as a consequence of NGN expression

    Static Footprint Local Forces, Areas, and Aspect Ratios for Three Type 7 Aircraft Tires

    Get PDF
    The National Tire Modeling Program (NTMP) is a joint NASA/industry effort to improve the understanding of tire mechanics and develop accurate analytical design tools. This effort includes fundamental analytical and experimental research on the structural mechanics of tires. Footprint local forces, areas, and aspect ratios were measured. Local footprint forces in the vertical, lateral, and drag directions were measured with a special footprint force transducer. Measurements of the local forces in the footprint were obtained by positioning the transducer at specified locations within the footprint and externally loading the tires. Three tires were tested: (1) one representative of those used on the main landing gear of B-737 and DC-9 commercial transport airplanes, (2) a nose landing gear tire for the Space Shuttle Orbiter, and (3) a main landing gear tire for the Space Shuttle Orbiter. Data obtained for various inflation pressures and vertical loads are presented for two aircraft tires. The results are presented in graphical and tabulated forms

    Aeolian removal of dust from radiator surfaces on Mars

    Get PDF
    Simulated radiator surfaces made of arc-textured Cu and Nb-1 percent-Zr and ion beam textured graphite and C-C composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It was found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al2O3 there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10 to 20 percent degradation, and with Fe2O3 a 20 to 40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured Cu and Nb-1 percent Zr was found to be more susceptible to emittance degradation than graphite or C-C composite. The most abrasion occurred at low angles, peaking at the 22.5 deg test samples

    Degradation of radiator performance on Mars due to dust

    Get PDF
    An artificial mineral of the approximate elemental composition of Martian soil was manufactured, crushed, and sorted into four different size ranges. Dust particles from three of these size ranges were applied to arc-textured Nb-1 percent Zr and Cu radiator surfaces to assess their effect on radiator performance. Particles larger than 75 microns did not have sufficient adhesive forces to adhere to the samples at angles greater than about 27 deg. Pre-deposited dust layers were largely removed by clear wind velocities greater than 40 m/s, or by dust-laden wind velocities as low as 25 m/s. Smaller dust grains were more difficult to remove. Abrasion was found to be significant only in high velocity winds (89 m/s or greater). Dust-laden winds were found to be more abrasive than clear wind. Initially dusted samples abraded less than initially clear samples in dust laden wind. Smaller dust particles of the simulant proved to be more abrasive than large. This probably indicates that the larger particles were in fact agglomerates

    Target field response to retinal innervation in Drosophila melanogaster

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 1996.Includes bibliographical references.by Sharon E. Perez.Ph.D

    Effects of dust accumulation and removal on radiators surfaces on Mars

    Get PDF
    Tests were carried out to assess the impact of wind blown dust accumulation and abrasion on radiator surfaces on Mars. High emittance arc-textured copper and niobium-1 percent-zirconium samples were subjected to basaltic dust laden wind at Martian pressure (1000 Pa) at speeds varying from 19 to 97 m/s in the Martian Surface Wind Tunnel. The effect of accumulated dust was also observed by pre-dusting some of the samples before the test. Radiator degradation was determined by measuring the change in the emittance after dust was deposited and/or removed. The principle mode of degradation was abrasion. Arc textured Nb-1 percent-Zr proved to be more susceptible to degradation than Cu, and pre-dusting appeared to have lessened the abrasion

    Kinesin-II is required for axonal transport of choline acetyltransferase in Drosophila

    Get PDF
    KLP64D and KLP68D are members of the kinesin-II family of proteins in Drosophila. Immunostaining for KLP68D and ribonucleic acid in situ hybridization for KLP64D demonstrated their preferential expression in cholinergic neurons. KLP68D was also found to accumulate in cholinergic neurons in axonal obstructions caused by the loss of kinesin light chain. Mutations in the KLP64D gene cause uncoordinated sluggish movement and death, and reduce transport of choline acetyltransferase from cell bodies to the synapse. The inviability of KLP64D mutations can be rescued by expression of mammalian KIF3A. Together, these data suggest that kinesin-II is required for the axonal transport of a soluble enzyme, choline acetyltransferase. in a specific subset of neurons in Drosophila. Furthermore, the data lead to the conclusion that the cargo transport requirements of different classes of neurons may lead to upregulation of specific pathways of axonal transport

    Transparent conducting thin films for spacecraft applications

    Get PDF
    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure
    • …
    corecore