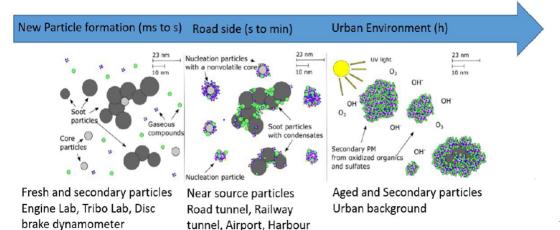


Physico-chemical characterization and source apportionment of UFP at airport, harbour, subway and road: The nPETS experimental set-up in Barcelona
Sharon Ridolfo¹, X. Querol¹, A. Karanasiou¹, N. Perez¹, A. Alastuey¹, B. van
Drooge¹, B. Piña¹, J. Portugal¹, U. Olofsson², E. Bergseth², E. Carbonell³, J. Vila⁴, J. Cortes⁵, M. Madrid⁵, I. Hernandez⁶ and F. Amato¹

> ¹IDAEA (CSIC), Spain; ²KTH, Sweden; ³FGV, Spain; ⁴Port of Barcelona, Spain; ⁵AENA SME, S.A. - Josep Tarradellas Barcelona-El Prat Airport, Spain; ⁶Governement of Catalonia, Spain

Table of contents

- **1.** Introduction
- 2. Objectives
- 3. Methodology
- 4. Preliminary results on the sampling protocol
- **5.** Conclusions

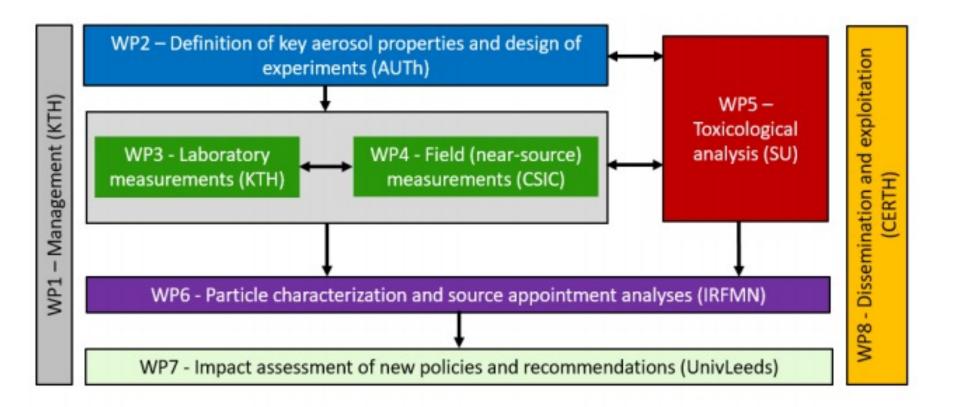


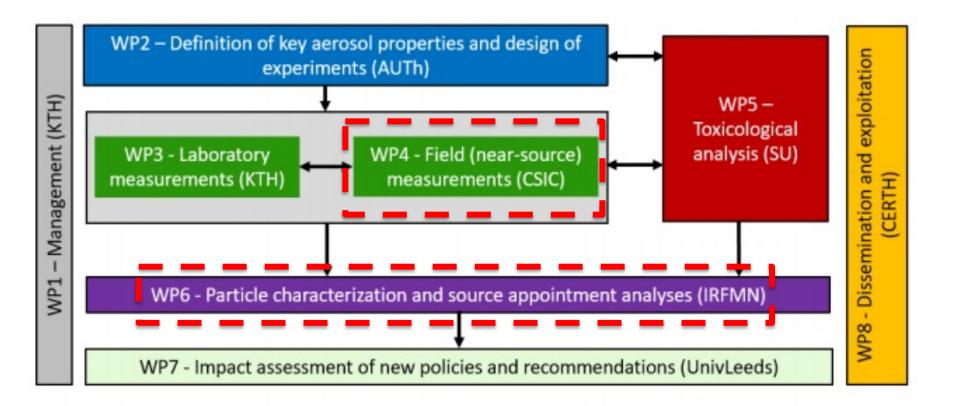
1. Introduction: The nPETS project

Nanoparticle emissions from the transport sector

• 3-years H2020 project, 4 European cities involved

(Milan, Thessaloniki, Stockholm, and Barcelona)




1. Introduction: The nPETS project

1. Introduction: The nPETS project

2. Objectives

- Size-segregated, physico-chemical characterization of UFP near different transport sources (road, harbor, airport, subway) + background;
- **Monitoring** of PNSD from 3 nm at the same environments;
- **Identifying** of typical PNSD emitted by different transport sectors;
- Quantifying contributions from different transport sectors to background UFP levels, by means of a constrained source apportionment.

3. Methodology: Mobile laboratory

- Calendar: July 2022-December 2023
- **5 sites**: Urban background, road, subway, harbor, and airport;
- **10 field campaigns** (winter/summer for each site);
- 4 weeks of continuous sampling for each campaign;
- **7-days** resolution samplings with ELPI+ and DGIs
- **1-day** resolution of additional sampling for FESEM/TEM analyses

ELPI+ Dekati 2 DGIs Dekati

SMPS (>10nm) + CPC (>3nm), TSI

Aethalometer AE-33 (7 Wavelengths)

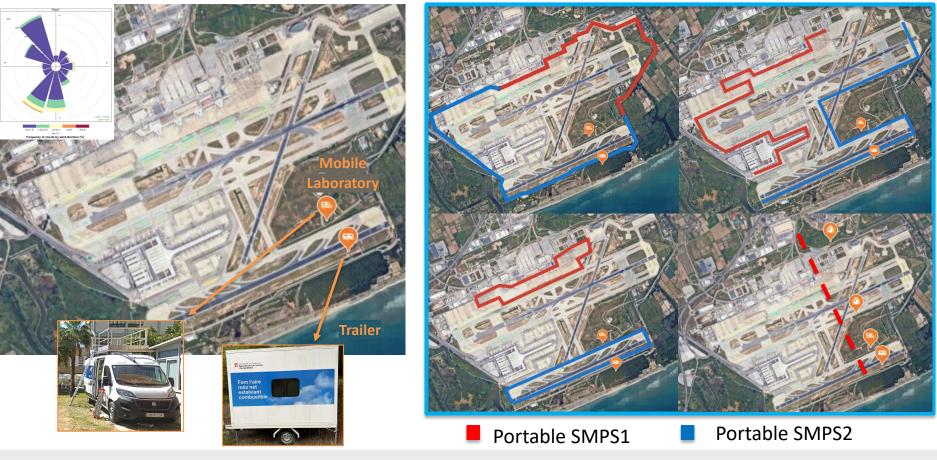
High volume PM₁ and PM₁₀ with chemical speciation Grimm Gas analyzers (NO_X, NH₃,SO₂,O₃) Meteorological parameters

3. Methodology: Portable equipments

2 Portable SMPS for PNSD 9–241 nm (90s time resolution; 0.13 lpm, 4h autonomy) developed by Hanyang University (*Lee et al., 2015*), with the addition of other portable instruments.

Using miniaturised scanning mobility particle sizers to observe size distribution patterns of quasi-ultrafine aerosols inhaled during city commuting

Teresa Moreno^{a,*}, Cristina Reche^a, Kang-Ho Ahn^b, Hee-Ram Eun^b, Woo Young Kim^b, Hee-Sang Kim^b, Amaia Fernández-Iriarte^{a,c}, Fulvio Amato^a, Xavier Querol^a


 Used for route measurements to obtain UFP/O₃/BC/PM pollution maps at subway, harbor, airport and road environments.

3. Methodology: Airport Campaigns

Upwind and downwind measurements

Focus on *idling, taxing, departure* and *landing*

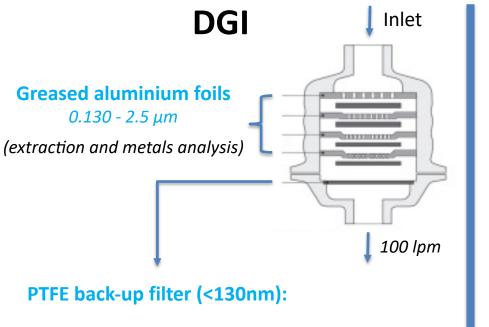
3. Methodology: Harbor Campaigns

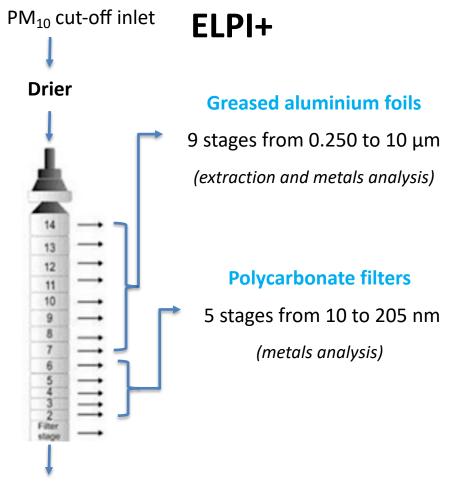
Upwind and downwind

measurements

Focus on *ferries*, *cruises* and *shipping emissions*

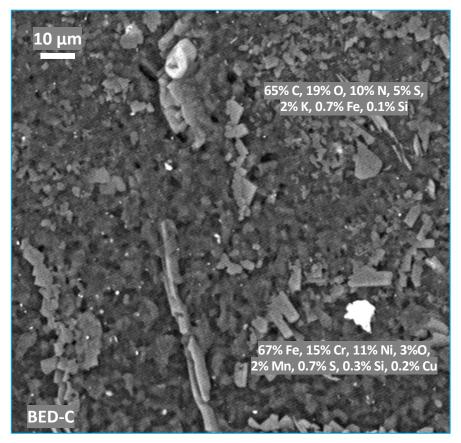
Portable SMPS1


Portable SMPS2



3. Methodology: Sampling substrates

- Major and trace elements: ICP MS/AES,
- Ion-chromatography: sulphate, nitrate, chloride
- Specific electrode: ammonium
- Organic compounds: GC-MS

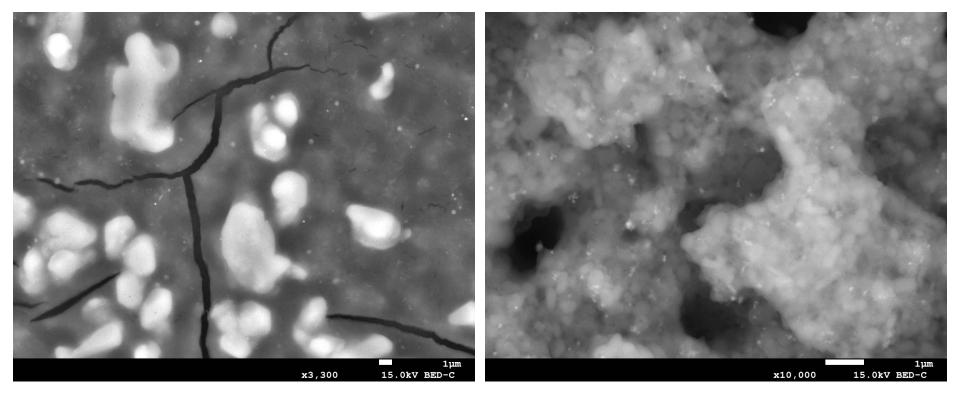


3. Methodology: Why our protocol?

- No grease → Bouncing effect: micrometric metal particles from coarser stages.
- No drier → Water condensation in stages with
 D₅₀> 165 nm due to the greater presence of
 sulphate (*hygroscopic*):
 - Dissolution and precipitation of sulphate and nitrate salts.
 - Formation of a homogeneous cement that captures even the finest particles in the wrong stages.
 - Change in composition and size of PM.

ELPI+ Stage 6 (D₅₀=165nm), polycarbonate filters

10/16


3. Methodology: Why our protocol?

Stage 6 (D₅₀=165nm) of ELPI+

Without dryer

Stage 6 (D₅₀=165nm) of ELPI+

With dryer

3. Methodology: Source apportionment

Positive Matrix Factorization (PMF) by means of the Multilinear Engine (ME-2) for:

1. Near-source PNSD source apportionment (>3nm) using also gaseous pollutants data (*Rivas et*

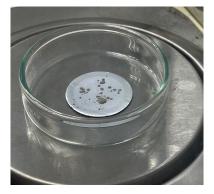
al., 2020) at harbor, airport, roadways and subway in order to identify typical PNSD from each transport source.

$$x_{ij} = \sum_{k=1}^{p} g_{ik} f_{kj} + e_{ij}$$

- Uncertainties estimation method (*Rivas et al. 2020*): $\sigma_{ij} = \alpha_j \cdot (N_{ij} + \bar{N}_j)$

2. Use typical PNSDs as a-priori information for a «constrained PMF» at urban background using pulling equations in ME-2 (*Amato et al., 2009*)

$$Q_{aux} = rac{\left(f_{jk} - a_{jk}
ight)^2}{\sigma_{jk}^{aux^2}}$$


3. Size-segregated metals source apportionment (*Pere-Trepat et al., 2007*)

4. Preliminary results: PM extraction from greased aluminium foils (Apiezon-L, Dekati)

1. Deposition of standard material (4 mg – P1633b)

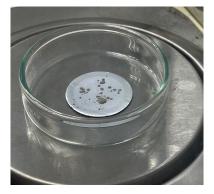
- 5. Acid digestion in Teflon vessels:
- 1,25 ml HNO₃ + 2,5 ml HF
- 4h in stove at 90°C, 24h cooling
- 1,25 ml HClO₄, evaporation
- 0,6 ml HNO₃, 10+2 ml miliQ water
- **6. Centrifugation** (20 min), separation and ICP analysis of the supernatant.

with the solvent

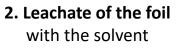
2. Leachate of the foil

3. Ultrasonic bath (1h) & further leachate

4. Centrifugation (20 min 3000 rpm) x2 + evaporation


essels:	Solvent	Isopropanol	Toluene	Hexane	Acetone
F					
cooling	ICP-MS (Trace elements)	62.0 ± 17.5	75.5 ± 21.8	53.8 ± 21.9	72.0 ± 11.6**
ion	Recovery % (SD)				
iliQ water	ICP-AES				
eparation and ICP	(Mayor elements) Recovery % (SD)	70.8 ± 8.25	84.7 ± 12.3	60.6 ± 19.4	72.3 ± 11.3*

*Fe, P, S excluded; **Cd, Sn excluded



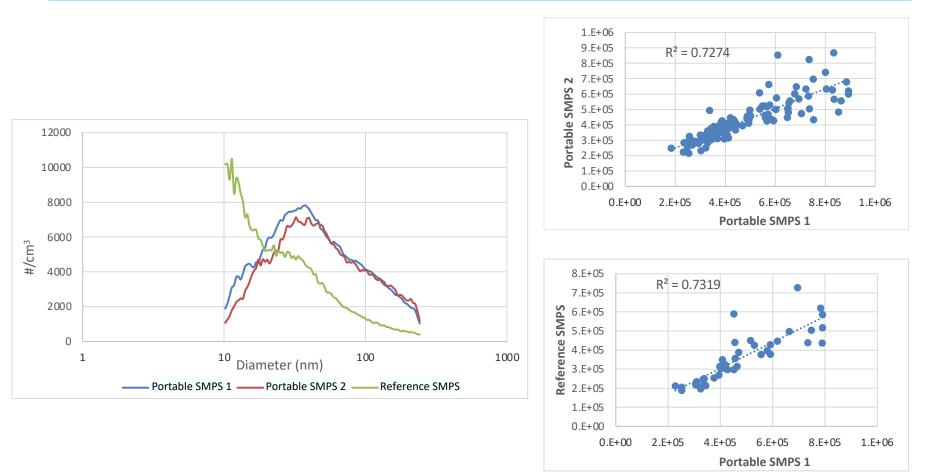

4. Preliminary results: PM extraction from greased aluminium foils (Apiezon-L, Dekati)

1. Deposition of standard material (4 mg – P1633b)

- 5. Acid digestion in Teflon vessels:
- 1,25 ml HNO₃ + 2,5 ml HF
- 4h in stove at 90°C, 24h cooling
- 1,25 ml HClO₄, evaporation
- 0,6 ml HNO₃, 10+2 ml miliQ water
- **6. Centrifugation** (20 min), separation and ICP analysis of the supernatant.

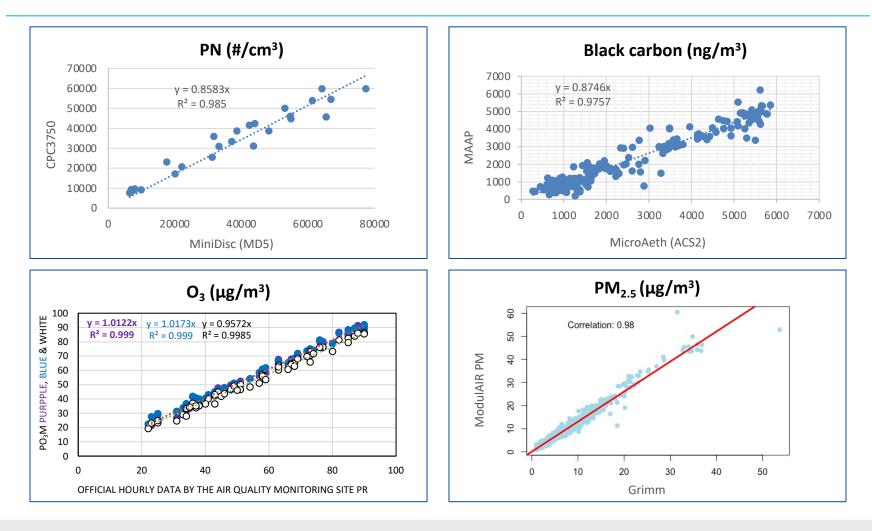
3. Ultrasonic bath (1h) & further leachate

4. Centrifugation (20 min 3000 rpm) x2 + evaporation



	Solvent	Isopropanol	Toluene	Hexane	Acetone
3	ICP-MS (Trace elements) Recovery % (SD)	62.0 ± 17.5	75.5 ± 21.8	53.8 ± 21.9	72.0 ± 11.6**
ter ion and ICP	ICP-AES (Mayor elements) Recovery % (SD)	70.8 ± 8.25	84.7 ± 12.3	60.6 ± 19.4	72.3 ± 11.3*

*Fe, P, S excluded; **Cd, Sn excluded


4. Preliminary results: portable equipments intercomparisons for quality assurance

4. Preliminary results

5. Conclusions

- nPETS project aims at physico-chemically characterizing and monitoring of UFP emitted from road traffic, shipping, aviation and railway emissions;
- A **sampling protocol** has been developed for DGI and ELPI+ impactors, including extraction and acid digestion of samples collected on aluminium foils:
 - Drier & grease minimize positive and negative artefacts;
 - Toluene seems to be the best dissolvent for particle extraction from Apiezon-L greased aluminium foils;
- 4 SMPSs (2 from TSI + 2 portable SMPS) will be used simultaneously at each site to study spatial gradients;
- **Different levels of complexity of source apportionment (PMF)** will be applied in order to determine PNSD and UF metals emitted from different transport sectors and calculate their contribution to average exposure levels.

Thank you for your attention!

Sharon Ridolfo, IDAEA (CSIC)

Email: sharon.ridolfo@idaea.csic.es

