99 research outputs found

    Bandwidth efficient CCSDS coding standard proposals

    Get PDF
    The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations

    The Manifestation of Stopping Sets and Absorbing Sets as Deviations on the Computation Trees of LDPC Codes

    Get PDF
    The error mechanisms of iterative message-passing decoders for low-density parity-check codes are studied. A tutorial review is given of the various graphical structures, including trapping sets, stopping sets, and absorbing sets that are frequently used to characterize the errors observed in simulations of iterative decoding of low-density parity-check codes. The connections between trapping sets and deviations on computation trees are explored in depth using the notion of problematic trapping sets in order to bridge the experimental and analytic approaches to these error mechanisms. A new iterative algorithm for finding low-weight problematic trapping sets is presented and shown to be capable of identifying many trapping sets that are frequently observed during iterative decoding of low-density parity-check codes on the additive white Gaussian noise channel. Finally, a new method is given for characterizing the weight of deviations that result from problematic trapping sets

    Iterative Construction of Regular LDPC Codes from Independent Tree-Based Minimum Distance Bounds

    Get PDF
    An independent tree-based method for lower bounding the minimum distance of low-density parity-check (LDPC) codes is presented. This lower-bound is then used as the decision criterion during the iterative construction of regular LDPC codes. The new construction algorithm results in LDPC codes with greater girth and improved minimum-distance bounds when compared to regular LDPC codes constructed using the progressive edge-growth (PEG) construction and the approximate cycle extrinsic message degree (ACE)-constrained PEG construction. Simulation results of codes constructed with the new method show improved performance on the additive white Gaussian noise channel at moderate signal-to-noise ratios

    A simulation study of the performance of the NASA (2,1,6) convolutional code on RFI/burst channels

    Get PDF
    In an earlier report, the LINKABIT Corporation studied the performance of the (2,1,6) convolutional code on the radio frequency interference (RFI)/burst channel using analytical methods. Using an R(sub 0) analysis, the report concluded that channel interleaving was essential to achieving reliable performance. In this report, Monte Carlo simulation techniques are used to study the performance of the convolutional code on the RFI/burst channel in more depth. The basic system model under consideration is shown. The convolutional code is the NASA standard code with generators g(exp 1) = 1+D(exp 2)+D(exp 3)+D(exp 5)+D(exp 6) and g(exp 2) = 1+D+D(exp 2)+D(exp 3)+D(exp 6) and d(sub free) = 10. The channel interleaver is of the convolutional or periodic type. The binary output of the channel interleaver is transmitted across the channel using binary phase shift keying (BPSK) modulation. The transmitted symbols are corrupted by an RFI/burst channel consisting of a combination of additive white Gaussian noise (AWGN) and RFI pulses. At the receiver, a soft-decision Viterbi decoder with no quantization and variable truncation length is used to decode the deinterleaved sequence

    Search for optimal distance spectrum convolutional codes

    Get PDF
    In order to communicate reliably and to reduce the required transmitter power, NASA uses coded communication systems on most of their deep space satellites and probes (e.g. Pioneer, Voyager, Galileo, and the TDRSS network). These communication systems use binary convolutional codes. Better codes make the system more reliable and require less transmitter power. However, there are no good construction techniques for convolutional codes. Thus, to find good convolutional codes requires an exhaustive search over the ensemble of all possible codes. In this paper, an efficient convolutional code search algorithm was implemented on an IBM RS6000 Model 580. The combination of algorithm efficiency and computational power enabled us to find, for the first time, the optimal rate 1/2, memory 14, convolutional code

    Is This Transfer Shock ? Examining the Perceptions of Engineering Students Who Articulate Within the Irish Higher Education Context.

    Get PDF
    Abstract—“Transfer shock” is a well-known phenomenon during the process of articulation, when students move from short-cycle applied programs to more academic longer-cycle study programs. In the US context this problematic transition has been observed in students transferring from community colleges into the traditional university system. In Ireland’s binary higher education structure, one set of institutions, known as Institutes of Technology (IoTs) allow for this transition to take place entirely within individual institutions. This paper is part of an ongoing investigation into one such IoT, where engineering students who achieve high grades at the end of 3-year (so-called Level 7) “ordinary degree” programs frequently transfer into the 3rd year of 4-year Level 8 “honors degree” programs, with surprisingly successful outcomes. One surprise derives from the fact that the students who enter Level 7 engineering programs are deemed at the outset to be academically less able, particularly in mathematics, than those who go directly into Level 8 programs from secondary school. Relatively little work has been done on this transition to date. In the 3rd and 4th year of many honors engineering programs within this institution it is not unusual to have 30-50% of the students coming from an ordinary degree background, the majority from within the institution itself – with others transferring from other IoTs in Ireland. Previous research has shown that students from this background initially struggle in the 3rd year of the honors degree program when compared with students who have proceeded directly through the honors program, before going on to successfully graduate. Can this be attributed to ‘transfer shock’; even though most of these students are continuing in an institution and with faculty that they are already familiar with? In order to examine this phenomenon we interview students from several engineering disciplines at various points in this transition. We explore the perceptions of the students regarding this transition and, based on the information coming from the interviews, we conduct a large scale survey to be administered to articulating students across engineering programs in the institution. The preliminary results of this survey are also presented here

    Connes' embedding problem and Tsirelson's problem

    Get PDF
    We show that Tsirelson's problem concerning the set of quantum correlations and Connes' embedding problem on finite approximations in von Neumann algebras (known to be equivalent to Kirchberg's QWEP conjecture) are essentially equivalent. Specifically, Tsirelson's problem asks whether the set of bipartite quantum correlations generated between tensor product separated systems is the same as the set of correlations between commuting C*-algebras. Connes' embedding problem asks whether any separable II1_1 factor is a subfactor of the ultrapower of the hyperfinite II1_1 factor. We show that an affirmative answer to Connes' question implies a positive answer to Tsirelson's. Conversely, a positve answer to a matrix valued version of Tsirelson's problem implies a positive one to Connes' problem

    Bandwidth efficient coding: Theoretical limits and real achievements. Error control techniques for satellite and space communications

    Get PDF
    In his seminal 1948 paper 'The Mathematical Theory of Communication,' Claude E. Shannon derived the 'channel coding theorem' which has an explicit upper bound, called the channel capacity, on the rate at which 'information' could be transmitted reliably on a given communication channel. Shannon's result was an existence theorem and did not give specific codes to achieve the bound. Some skeptics have claimed that the dramatic performance improvements predicted by Shannon are not achievable in practice. The advances made in the area of coded modulation in the past decade have made communications engineers optimistic about the possibility of achieving or at least coming close to channel capacity. Here we consider the possibility in the light of current research results

    A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    Get PDF
    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP), in collaboration with the Behavioral Health and Performance (BHP) Element, is conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within that volume. NASA is looking for innovative methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods for collecting such data exist yet many are obtrusive and require significant postprocessing. Example technologies used in terrestrial settings include infrared (IR) retroreflective marker based motion capture, GPS sensor tracking, inertial tracking, and multiple camera filmography. However due to constraints of space operations many such methods are infeasible, such as inertial tracking systems which typically rely upon a gravity vector to normalize sensor readings, and traditional IR systems which are large and require extensive calibration. However multiple technologies have not yet been applied to space operations for these explicit purposes. Two of these include 3Dimensional Radio Frequency Identification RealTime Localization Systems (3D RFIDRTLS) and depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IRdepth cameras like the Microsoft Kinect or Light Detection and Ranging / LightRadar systems, referred to as LIDAR)

    A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    Get PDF
    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP) and the Behavioral Health and Performance (BHP) Element are conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within the volume. NASA needs methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods exist yet many are obtrusive and require significant post-processing. Examplesused in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multi-camera methods Due to constraints of space operations many such methods are infeasible. Inertial tracking systems typically rely upon a gravity vector to normalize sensor readings,and traditional IR systems are large and require extensive calibration. However, multiple technologies have not been applied to space operations for these purposes. Two of these include: 3D Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) Depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR
    corecore