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The error mechanisms of iterative message-passing decoders for low-density parity-check codes are studied. A tutorial review is
given of the various graphical structures, including trapping sets, stopping sets, and absorbing sets that are frequently used to
characterize the errors observed in simulations of iterative decoding of low-density parity-check codes. The connections between
trapping sets and deviations on computation trees are explored in depth using the notion of problematic trapping sets in order
to bridge the experimental and analytic approaches to these error mechanisms. A new iterative algorithm for finding low-weight
problematic trapping sets is presented and shown to be capable of identifying many trapping sets that are frequently observed
during iterative decoding of low-density parity-check codes on the additive white Gaussian noise channel. Finally, a new method
is given for characterizing the weight of deviations that result from problematic trapping sets.

1. Introduction

Prior to 1993, channel codes were typically designed with the
goal of maximizing the minimum distance of the code [1, 2].
The combination of a code with a large minimum distance
and a decoder that minimizes the probability of codeword
error often resulted in good asymptotic performance. The
discovery of turbo codes [3] and the rediscovery of low-
density parity-check (LDPC) codes [4] revealed that codes
with relatively poor minimum distance properties could
achieve near-capacity performance at bit error rates of Pb <
10−6. This resulted in a reduced emphasis on maximizing
minimum distance when design codes for use on the
additive white Gaussian noise (AWGN) channel. As with
many other classes of codes, there are no practical bounds
for the decoders used for turbo codes and LDPC codes
and simulations are required to accurately determine the
performance at practical operating points.

With the discovery of turbo codes and the various
subsequent iterative decoders, the phenomenon of the error
floor has become prominent in practical code design. The
term error floor refers to the situation where the error rate

at the output of the decoder suddenly starts to decrease at a
slower rate as a function of increasing signal-to-noise ratio
(SNR); that is, the performance curve flattens out. The error
floors that occur with iterative decoding of turbo codes and
LDPC codes are problematic in practical systems because it
is difficult to predict the specific operating point at which
they occur, and thus design engineers risk using codes that
may have unknown error floors that limit the performance
of the system. In the case of iterative decoding of turbo
codes, it has been shown that the error floor is usually the
result of the overall turbo code having low weight codewords
that begin to limit the performance of the code after some
SNR is reached [5]. The minimum distance of a turbo code
can be increased, and hence the likelihood of an error floor
sufficiently mitigated, through the use of various interleaver
designs [6, 7].

Low-density parity-check codes with iterative decoding
are also known to exhibit error floors [8, 9], albeit at
much lower bit error rates than the error floors of turbo
codes of similar block length. In many cases, because of the
exceptionally low bit error rates at which the error floors
of LDPC codes appear, it is not practical to use Monte
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Carlo simulations to demonstrate the existence of these
error floors. The inability to run conventional computer
simulations down to the error floor combined with the lack
of practical upper bounds for LDPC codes has inhibited the
deployment of LDPC codes in high-throughput applications
that require near error-free performance with bit error rates
of Pb < 10−15.

LDPC codes are most commonly decoded using iterative
message-passing decoders such as the min-sum decoder [10]
and the sum-product decoder [11] due to their excellent
performance and low implementation complexity. Many
attempts have been made to estimate the performance of
these decoders by characterizing their error mechanisms.
Three of the most well-known error mechanisms are stop-
ping sets [12], trapping sets [13], and absorbing sets [8].
Unfortunately, none of these mechanisms leads to strict
upper bounds on the performance of iterative decoding
over the AWGN channel, and thus they are of limited use
in determining error floors. Wiberg showed that deviations
on the computation trees of LDPC codes can be used to
compute tight upper bounds on the performance of LDPCs
with iterative decoders [10]; however, it is computationally
intractable to do so after even a small number of decoder
iterations. A practical method for determining the error floor
of LDPCs with iterative decoding has yet to be discovered.

This paper attempts to make progress on this problem
by integrating the precise, but computational intractable,
work of Wiberg with the experimental studies of the error
mechanisms observed when iteratively decoding LDPCs. The
paper begins with a tutorial review of the existing methods
for analyzing the performance of iterative message-passing
decoders. Then, the notion of a problematic trapping set is
introduced and its relationship to deviations is examined in
detail, with the goal of determining what makes deviations
either more or less problematic during iterative message-
passing decoding. Finally, an iterative method is given for
finding problematic trapping sets using the weights of
deviations on the computation trees.

2. Background

The following model for channel coding is used throughout
this paper. First, a vector u ∈ FK2 of K information bits is
generated by a binary source. The binary source is assumed
to be memoryless, which is often the result of source coding
(data compression), and therefore all information sequences
in FK2 are equally probable. A binary K × N generator
matrix G may be used by the channel encoder to map the
information bits u to a length N codeword c ∈ FN2 , via the
mapping c = uG. Here, it is assumed that the matrix G is
full-rank, and thus the rate of the code is R = K/N .

Before a codeword c ∈ C is transmitted over the channel,
it is modulated via the transformation

xi = m(ci) = 2ci − 1, (1)

for all i = 0, . . . ,N − 1. The received signal vector y ∈ RN is
given by

y = x + n, (2)

where n ∈ RN is the Gaussian noise vector. The log-
likelihood ratio (LLR) vector, often used for soft-decision
decoding, is given by

λi =
PY |X

(
yi | −1

)

PY |X
(
yi | 1

) , (3)

for all i = 1, . . . ,N . This reduces to λi = (−2/σ2)yi when
n is a vector of AWGN. An estimate ĉ of the transmitted
codeword c is derived from the received vector y at the
channel decoder. Finally, the information bits û extracted
from ĉ are passed to the sink.

As mentioned earlier, each of the information sequences
u ∈ FK2 is equiprobable. Since there is a one-to-one
mapping between information sequences and codewords, all
codewords in the code C are equiprobable as well. Therefore,
P(ci) = P(c j) for all ci, c j ∈ C, where P(ci) is the probability
that codeword ci is transmitted. When considering the per-
formance of linear codes, equiprobable codewords allow for
the assumption that the all-zeros codeword was transmitted.
The all-zeros codeword assumption is used throughout this
paper.

From the generator matrix G, it is possible to derive
an (N − K) × N parity-check matrix H for the code. A
parity-check matrix of a code C is any matrix H , such that
HcT = 0 for all c ∈ C. LDPC codes are often defined by
their parity-check matrix H . In particular, LDPC codes are
a class of codes with sparse parity-check matrices. A sparse
parity-check matrix is any binary matrix that contains more
binary 0s than binary 1s. A (dV ,dF)-regular LDPC code is
one that has a fixed number dV of binary 1s in each column of
the parity-check matrix and some fixed number dF of binary
1s in each row of the parity-check matrix. An example of a
(2,3)-regular LDPC code of length N = 6 and dimension
K = 3 is given by the parity-check matrix

H(2,3) =

⎡

⎢
⎢
⎢
⎣

1 1 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 1 1

⎤

⎥
⎥
⎥
⎦
. (4)

The parity-check matrix of a length N , dimension K code
must contain at least (N −K) rows, since the kernel of G has
dimension (N − K). However, it is possible for the parity-
check matrix to contain more than (N −K) rows. Therefore,
the number of rows in the parity-check matrix is denoted by
M, where M ≥ (N − K).

A Tanner graph is a bipartite graphical representation of
a low-density parity-check matrix. To construct a Tanner
graph from a parity-check matrix, each column i in the
parity-check matrix is assigned to a corresponding variable
node vi in the Tanner graph, and each row j is assigned to
a corresponding check node f j in the Tanner graph. The set
of all variable nodes is V , and the set of all check nodes is
F. There is an edge ei, j between variable node vi and check
node f j in the Tanner graph if and only if the entry in H at
the intersection of the jth row and ith column is a binary 1.
The Tanner graph T = (V

⋃
F,E) is thus defined by the set

of variable nodes V , the set of check nodes F, and the set of
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Figure 1: Tanner graph of a (2, 3)-regular LDPC code.

edges E. The Tanner graph corresponding to the parity-check
matrix H(2,3) (given by (4)) is shown in Figure 1.

Note that in the Tanner graphs of irregular LDPC codes
variable nodes and check nodes do not all have the same
number of incident edges. The number of check nodes that
a specific variable node vi is connected to is denoted by dvi ,
and the number of variable nodes that a specific check node
fi is connected to is denoted d fi .

2.1. Iterative Message-Passing Decoding. The min-sum (MS)
and sum-product (SP) decoders are low-complexity, sub-
optimal iterative decoders that can be used to decode
low-density parity-check codes. Given a particular parity-
check matrix, the MS decoder operates by passing messages
between the check nodes and the variable nodes along the
edges of the Tanner graph of the code.

Before introducing the decoders, some additional nota-
tion is necessary. The set of neighbors of check node fi in
the Tanner graph is denoted N( fi) = {vj | hi, j = 1}, and
similarly the set of neighbors of variable node vi in the Tanner
graph is denoted N(vi) = { f j | hj,i = 1}. To denote the set
of neighbors of check node fi excluding variable node vj , the
notation N( fi) \ vj is used. Similarly, the set of neighbors of
variable node vj excluding check node fi is denotedN(vj)\ fi.
During decoding, messages are passed between neighboring
check nodes and variable nodes along the edges of the Tanner
graph. Messages from check node fi to variable node vj ∈
N( fi) are denoted by mfi→ vj , and messages from variable
node vi to check node f j ∈ N(vi) are denoted mvi→ f j . Given
the transmitted codeword x, the channel output y available
at the receiver, and a maximum number of iterations �max,
the steps for MS and SP decoding are given in the following
algorithm

Algorithm 1 (Min-Sum/Sum-Product Decoding).

Step 1 (Initialization). Set the number of iterations to � = 0.
For all messages mfi→ vj , set

mvi→ f j = λi =
PY |X

(
yi | −1

)

PY |X
(
yi | 1

) = −2
σ2

yi. (5)

Step 2 (Check Node Update). Set � = � + 1. For all messages
mvi→ f j , set

Min-Sum:

mfi→ vj =

⎛

⎜
⎝

∏

vk∈N( fi)\vj
sgn

(
mvk→ fi

)
⎞

⎟
⎠

⎛

⎝ min
vk∈N( fi)\vj

| mvk→ fi

⎞

⎠.

(6)

Sum-Product:

mfi→ vj = 2 · tanh−1

⎛

⎜
⎝

∏

vk∈N( fi)\vj
tanh

(
mvk→ fi

2

)
⎞

⎟
⎠. (7)

Step 3 (Variable Node Update). For all messages mvi→ f j , set

mvi→ f j = λi +
∑

fk∈N(vi)\ f j
m fk→ vi . (8)

Step 4 (Check Stop Criteria). For all mvi , set

mvi = λi +
∑

fk∈N(vi)

mfk→ vi . (9)

For all ĉi, set

ĉi =
⎧
⎨

⎩

0 if mvi > 0,

1 if mvi < 0,
(10)

with P(ĉi = 0 | mvi = 0) = P(ĉi = 1 | mvi = 0) = 0.5.

If H ĉT = 0 or � ≥ �max, stop decoding, else return to
Step 2.

One of the primary strengths of the min-sum and sum-
product decoders is the relatively small number of operations
performed during each iteration. During each iteration, the
messages mvi→ f j and mfj → vi must be computed for each
binary 1 in the parity-check matrix. For a (dV ,dF)-regular
LDPC code, there are (N × dV ) = (M × dF) binary 1s in the
parity-check matrix. When the degree of the nodes and the
number of iterations is fixed, the complexity of MS decoding
scales linearly with the length N of the code.

In practice, the min-sum and sum-product decoders
do not always output a codeword. It has been shown that
when the MS decoder does not output a codeword after
a large number (>200) of iterations has been performed,
the output often cycles in a repeating sequence of two or
more noncodeword outputs [14]. In Sections 2.2 through
Section 2.4, three different characterizations are given for the
noncodeword outputs of iterative message-passing decoders.

2.2. Stopping Sets. The notion of stopping sets was first
introduced by Forney et al. [15] in 2001. Two years later, a
formal definition of stopping sets was given by Di et al. [12].
They demonstrated that the bit and word error probabilities
of iteratively decoded LDPC codes on the binary erasure
channel (BEC) can be determined exactly from the stopping
sets of the parity-check matrix.
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v1 v2 v3 v4

S

f1 f2 f3 f4 f5

Figure 2: Example of a stopping set in the Tanner graph of an LDPC
code.

Definition 1 (stopping sets [12]). A stopping set S is a subset
of the set of variable nodes V , such that any check node
connected to a variable node contained in S is connected to
at least two variable nodes in S.

A small example of a stopping set is given in Figure 2.
Consider the subset S = {v1, v2, v3, v4} of the set of variable
nodes V . There are five check nodes { f1, f2, f3, f4, f5}
connected to the set S, and each of them is connected to
S at least two times. Note that only f2 is connected to the
set S an odd number of times; If each of the check nodes
is connected to S an even number of times, S corresponds
to a codeword support set where all bits in S can be flipped
without changing the overall parity of any of the check
nodes.

The intuition behind stopping sets begins with an under-
standing of iterative message-passing decoders. Information
given to a specific variable node from a neighboring check
node is derived from all other variable nodes connected to
that check node. Consider two variable nodes vi, vj ∈ N( fk),
where both variable nodes contain an erasure. In this case,
each of the sets N( fk) \ vi and N( fk) \ vj contains at least
one erasure, thus making it impossible for the check node fk
to determine the parity of either set. For this reason, none
of the check nodes connected to a stopping set is capable
of resolving erasures, if each variable node contained in the
stopping set begins with an erasure from the channel.

Work relating linear programming (LP) pseudocode-
words to stopping sets for the binary erasure channel [15],
and both the binary symmetric channel (BSC) and the
additive white Gaussian noise channel [16], has revealed a
relationship between linear programming pseudocodewords
and the size of stopping sets. Although stopping sets
have a strong relationship with LP pseudocodewords, the
performance of neither the MS decoder or the SP decoder
on the BSC and AWGN channels can be predicted using
stopping sets alone.

2.3. Trapping Sets. Trapping sets, also referred to as near-
codewords, were first introduced by MacKay and Postol [13]
to provide an explanation for the weaknesses of algebraically

v1 v2 v3 v4

(4, 2) trapping set

f1 f2 f3 f4 f5

Figure 3: Example of a (4, 2) trapping set in the Tanner graph of an
LDPC code.

constructed low-density parity-check codes. They define
trapping sets as follows.

Definition 2 (trapping sets [13]). Consider a length N code
with parity-check matrix H , and let T ⊆ {1, . . . ,N} be a set
containing |T | = t coordinates. Consider a length-N binary
vector y with 1s in the coordinates of T and 0s elsewhere. If
the syndrome s = Hy has Hamming weight wt, the set T is
referred to as a (t,wt) trapping set.

Consider the trapping set shown in Figure 3, where the
set T = {1, 2, 3, 4} corresponds with a set of variable nodes
{v1, v2, v3, v4} in the Tanner graph of the parity-check matrix
H . There are four variable nodes in the set, so t = 4, and
if all variable nodes are set to a binary 1, only check nodes
f2 and f3 are connected to an odd number of binary 1s, so
the syndrome s has Hamming weight equal to 2. Therefore,
according to Definition 2, this set of variable nodes defines a
(4, 2) trapping set.

It is important to note that any set of variable nodes can
be considered a trapping set defined by some set of param-
eters, and the significance of trapping sets varies greatly
depending on the parameters (t,wt). In much the same
way that low-weight codewords are problematic to decoding,
erroneous channel information is more likely to affect the
majority of variable nodes in a trapping set which has low-
weight t. Richardson [17] shows that trapping sets with small
weight t and a small number of unsatisfied check nodes wt

are more likely to cause errors. When a trapping set has small
wt, the extrinsic information being passed into T can not
overcome the intrinsic information reinforced within T .

In [17], trapping sets are examined for different decoders
on the binary erasure channel, binary symmetric channel,
and the additive white Gaussian noise channel. Whereas
stopping sets can be used to precisely determine the prob-
ability of error on the BEC, trapping sets appear to cause
errors on the AWGN channel. Richardson [17] uses the
parameters and multiplicity of various problematic trapping
sets to estimate the error floor of LDPC codes at bit error
rates where simulations are not feasible. Unfortunately, the
somewhat vague definition of problematic trapping sets
makes it difficult to use them for performance analysis.



Journal of Electrical and Computer Engineering 5

v1 v2 v3 v4
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f1 f2 f3 f4 f5

Figure 4: Example of a (4, 1) absorbing set in the Tanner graph of
an LDPC code.

2.4. Absorbing Sets. In an attempt to clarify the ambiguity of
problematic trapping sets, Zhang et al. introduced the notion
of absorbing sets [8]. They define absorbing sets as follows.

Definition 3 (Absorbing Sets [8]). Let A ⊆ V be a set
containing |A| = a variable nodes. Also, let O(A) ⊆ F be
a set of check nodes such that |O(A)| = wa, and each check
node in the set O(A) has an odd number of edges connected
to A. If each variable node in A is connected to strictly more
check nodes in F \O(A) than in O(A), the set A is referred
to as a (a,wa) absorbing set. A fully absorbing set also satisfies
the condition that each variable node in V is connected to
more check nodes in F \O(A) than in O(A).

Note that an (a,wa) absorbing set is also an (a,wa)
trapping set, but the converse is not always true. Figure 4
shows an example of a (4, 1) absorbing set. The set of
variable nodes in this absorbing set is A = {v1, v2, v3, v4},
and the set of unsatisfied check nodes is O(A) = { f4}. The
variable node v2 is not connected to f4, and the variable
nodes v1, v3, and v4 are each connected to f4 and at least
two other check nodes in F. Therefore, each of the variable
nodes in A is connected to more satisfied check nodes than
unsatisfied check nodes. Also, note that the (4, 2) trapping
set in Figure 3 is not an absorbing set because variable nodes
v2 and v4 are connected to two unsatisfied check nodes and
only one satisfied check node.

Simulations show that the majority of errors encountered
in the error floor region during sum-product decoding
of the IEEE 802.3 an low-density parity-check code could
be attributed to absorbing sets [8, 9]. Although absorbing
sets appear to be useful for estimating the performance of
iterative message-passing decoding, they do not lead to strict
upper bounds. For upper bounds, it is possible to use the
concept of deviations on the computation tree.

2.5. Computation Trees and Deviations. In his 1996 dis-
sertation, Wiberg [10] presented groundbreaking analytical
results with respect to iterative decoding of low-density
parity-check codes. He provided extensive analysis of both
the MS and SP decoders by introducing a model of iterative
decoding known as the computation tree. Wiberg showed

that the MS decoder minimizes the probability of word error
when decoding a code whose Tanner graph is a tree, while
for the same type of code the SP decoder minimizes the
probability of bit error.

In addition to introducing computation trees, Wiberg
also introduced the concept of deviations. Wiberg proved
that deviations on the computation tree with negative cost
are required in order for errors to occur during MS and SP
decoding. Because of the importance of computation trees
and deviations in understanding finite tree-based decoding,
they are examined in detail in this section.

Consider a low-density parity-check code represented
by a Tanner graph T = (V

⋃
F,E). A computation tree

rooted at variable node vi after � iterations is denoted R(�)
vi .

In order to construct a computation tree from the Tanner
graph, a variable node vi is placed at the top level (root)
of a descending tree. To construct the next level in the tree
directly below vi, each of vi’s neighbors in N(vi) is added
to this level and connected to vi. This process continues
level-by-level, where nodes in the previous level are used to
determine nodes on next level, while maintaining that each
node in the computation tree has the same set of neighbors
as its corresponding node in the Tanner graph. For example,
if variable node vj on the last completed level is connected to
check node fk on the level above it, then all check nodes in
N(vj) \ fk must appear on the next level and be connected to
vj , thereby ensuring that vj is connected to exactly one copy
of each check node in N(vj).

Figure 5 gives an example of a Tanner graph, and its
corresponding computation tree rooted at v1 after two
iterations. Nodes at the bottom level of the computation tree
are referred to as leaf nodes. Notice that the leaf nodes are the
only nodes in the computation tree that are not connected
to a copy of each of their neighbors in the original Tanner
graph.

Computation trees are precise models for analyzing the
performance and behavior of min-sum and sum-product
decoding for a finite set of iterations. Each of these decoders
can be precisely modeled after � iterations by constructing N
different computation trees that contain 2�+1 levels of nodes
including the root node. The N computation trees are each
rooted at a different variable node from the original Tanner
graph. Then, for every variable node vi in each computation
tree, the LLR cost γi is assigned to that variable node. At
this point, MS or SP decoding operations can be performed
from the leaf nodes up to the root node. The final cost at
each of the root nodes determines the binary estimate of
the transmitted codeword computed by the decoder. Because
the MS and SP decoders are optimal on Tanner graphs that
are trees, the MS and SP decoders are optimal on each
of the computation trees derived from the Tanner graph.
MS chooses the least cost valid configuration on the tree,
where a valid configuration refers to any assignment of binary
numbers to the variable nodes such that each check node is
adjacent to an even number of variable nodes assigned to a
binary 1. The SP decoder, on the other hand, chooses the
value at the root node that has the highest probability over
all valid configurations.
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v1 v2 v3
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(a) Tanner graph

v2 v3 v2 v3 v2 v3

f1 f2 f3

v1

f2 f3 f2 f3 f1 f3 f1 f3 f1 f2 f1 f2

v1 v3 v1 v3 v1 v2 v1 v2 v1 v3 v1 v3 v1 v2 v1 v2 v1 v3 v1 v3 v1 v2 v1 v2

(b) Computation tree

Figure 5: Computation tree of a simple repetition code after � = 2 iterations.

Although the computation tree model is precise, after a
small number of iterations it becomes impractical to analyze
the performance of specific codes by considering all valid
configurations on the computation tree. The number of valid
configurations on the computation tree can be computed by
treating the computation tree as a Tanner graph. In order
to define a Tanner graph given the computation tree, treat
all check nodes and variable nodes in the computation tree
separately. For example, if multiple copies of variable node
v1 are distributed throughout the computation tree, each
copy is treated as a distinct variable node. After regarding
each variable node in the computation tree as distinct, one
can show that each check node on the computation tree
corresponds to a linearly independent parity-check equation.

If there are |R(�)
vi (V)| variable nodes and |R(�)

vi (F)| check
nodes on a computation tree rooted at variable node vi after

� iterations, then there are a total of 2|R
(�)
vi (V)|−|R(�)

vi (F)| valid
configurations on the tree. On a (dV ,dF)-regular LDPC code,
the number of variable nodes after � iterations is given by

∣∣
∣R(�)

vi (V)
∣∣
∣ = 1 +

�−1∑

i=0

dV (dF − 1)
(

((dV − 1)(dF − 1))i
)

,

(11)

and the number of check nodes is given by

∣
∣∣R(�)

vi (F)
∣
∣∣ =

�−1∑

i=0

dV
(

((dV − 1)(dF − 1))i
)
. (12)

Table 1: The number of nodes and valid configurations on the
computation tree of a (3, 6)-regular LDPC code.

Iterations Variable Nodes Check Nodes Configurations

1 16 3 8192

2 166 33 ≈ 1040

3 1666 333 ≈ 10401

To illustrate the growth rate in the number of valid
configurations on the computation tree, consider an LDPC
code where each variable node has degree dV = 3 and each
check node has degree dF = 6. These commonly used code
parameters result in what are known as a (3, 6)-regular LDPC
codes. Table 1 shows the number of variable nodes given by

∣
∣
∣R(�)

vi (V)
∣
∣
∣ = 1 +

�−1∑

i=0

15
(

10i
)

, (13)

the number of checks nodes given by

∣∣
∣R(�)

vi (F)
∣∣
∣ =

�−1∑

i=0

3 · 10i, (14)

and the corresponding number of valid configurations on the
computation tree after 1, 2, and 3 iterations. Note that the
growth rate is not affected by the block length of the code.

Table 1 illustrates the computational complexity asso-
ciated with considering each valid configuration on the
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Figure 6: Example of a deviation on the computation tree.

computation tree. In light of this, Wiberg [10] derived a sim-
plified bound on the performance of MS decoding operating
on a particular computation tree. In order to obtain this
bound, Wiberg introduced the concept of deviations on the
computation tree.

Definition 4 (Deviation [10]). A deviation is any set of vari-
able nodes on the computation tree satisfying the following
three conditions.

(1) Each check node in the computation tree is adjacent
to either two or zero variable nodes in the deviation
set.

(2) A deviation set contains the root node of the
computation tree.

(3) No proper and nonempty subset of variable nodes
in the deviation from a valid configuration on the
computation tree.

Figure 6 shows an example of a deviation on the com-
putation tree given in Figure 5(b). The larger blue variable
nodes are contained in the deviation, whereas the smaller red
nodes are not.

Wiberg uses the set of deviations on the computation tree
to derive an upper bound on the performance of the min-
sum decoder. It is necessary, but not sufficient, for at least one
deviation δ in the set of all deviations Δ to have negative cost
in order for an error to occur at the root node. The cost of the
deviation, denoted by G(δ), can be found by summing the
LLR cost of each of the nodes in the support of the deviation.
The cost of a deviation is given by

G(δ) =
∑

vi∈δ
γi, (15)

where copies of vi ∈ δ are counted as many times as
they appear in the deviation. A necessary, but not sufficient,
condition for an error to occur on the computation tree

rooted at variable node vi is given by [10]

min
δ∈Δ

G(δ) < 0. (16)

Using this condition, a bound can be derived on the
probability that the minimum-cost configuration on the
computation tree contains a binary 1 at the root node. This
bound is

P(vi = 1) ≤ P
(

min
δ∈Δ

G(δ) < 0
)

,

≤
⋃

δ∈Δ
P(G(δ) < 0),

(17)

which can be further loosened to

P(vi = 1) ≤
∑

δ∈Δ
P(G(δ) < 0), (18)

by using the union bound.
Wiberg [10] shows that the bound given by (18) can be

used to predict the performance of min-sum decoding of
infinite-length codes after a specific number of iterations.
Wiberg begins by assuming that the computation trees have
no repeated nodes. This assumption simplifies the weight
enumerators of the deviations for regular LDPC codes.
Wiberg also shows that (18) can be used to bound MS
decoder performance when there are multiple copies of each
variable node in the tree. Thus, in theory, Wiberg’s deviation
bound can be used to bound the performance of MS
decoding of finite length codes. The following proposition
shows that the number of deviations grows exponentially
with dV , thus making it computationally intractable to
enumerate the deviations even after a small number of
iterations.

Proposition 1. Let R(�)
vi be the computation tree of a (dV ,dF)-

regular LDPC code, rooted at variable node vi after � iterations.

Then, the number of deviations that exist on R(�)
vi is

(dF − 1)
∑�
i=1 dV (dV−1)i−1

. (19)
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Table 2: Number of deviations at iterations 1–5 for a (3, 6)-regular
LDPC code.

Iterations # of deviations

1 125

2 1,953,125

3 4.7684× 1014

4 2.8422× 1031

5 1.0097× 1065

Proof. By the definition of a deviation, we must assign the
root node vi to a binary 1. Each of the dV check nodes
immediately below vi must assign exactly one of the their
(dF − 1) child variable nodes to a binary 1. Thus, there
are a total of (dF − 1)dV deviations after one iteration. In
addition, there are exactly dV leaf nodes in the support of
each deviation after one iteration.

Each of the previous dV leaf nodes gets connected to
(dV − 1) check nodes after two iterations. Each of these
check nodes assigns one of their (dF − 1) child variable
nodes to a binary 1. Therefore, for each deviation after one
iteration there are (dF − 1)dV (dV−1) different deviations after
two iterations. This brings the total number of deviations

to (dF − 1)dV (dF − 1)dV (dV−1) = (dF − 1)(dV )2

after two
iterations. The total number of leaf nodes in the support of
the deviation after two iterations is dV (dV − 1).

Following this pattern, the dV (dV − 1) variable nodes in
support of the deviation after two iterations branchs out to

dV (dV − 1)2 check nodes. There are (dF − 1)dV (dV−1)2

ways
of assigning the leaf nodes to the support of the previous
deviation. This brings the total number of deviations to

(dF − 1)(dV )2

(dF − 1)dV (dV−1)2 = (dF − 1)(dV )3−(dV )2+dV after
three iterations.

After � iterations, the dV (dV − 1)�−2 old leaf nodes in
the support of the deviation branch out to dV (dV − 1)�−1

new leaf nodes in the support of the deviation. There are

(dF − 1)dV (dV−1)�−1

ways of assigning the support to the
previous deviation, and the total number of deviations after
� iterations is

�∏

i=1

(dF − 1)dV (dV−1)i−1

= (dF − 1)
∑�
i=1 dV (dV−1)i−1

. (20)

The number of deviations on the computation tree of
a (3, 6)-regular low-density parity-check code is given in
Table 2 for iterations 1 through 5. Even after only a small
number of iterations, it becomes impractical to enumerate
each of the deviations in order to compute the upper bound
on the probability of bit error of the root variable node of the
computation tree.

Using computation trees, Wiberg provided a precise
model of the behavior of the min-sum and sum-product
decoders. Unfortunately, the size of the computation trees
and the number of configurations on them grows too
large for practical analysis. Deviations provide a simplified
approach to the analysis of computation trees, but the

number of deviations also grows exponentially with the
number of iterations.

3. Stopping Sets, Absorbing Sets, and
Resulting Deviations

Deviations can be used to define a necessary condition for
an error to occur during iterative decoding. The condition
simply states that there must be at least one deviation with
cost less than zero, assuming that the all-zeros codeword
was sent. However, this condition says nothing about which
deviations are more or less likely to cause errors. What
is known is that at high SNRs low-weight, deviations
are much more likely to cause errors than high-weight
deviations. Thus it is reasonable to expect that low-weight
stopping sets and low-weight deviations coincide over the
BEC channel, since low-weight stopping sets are precisely
the cause of errors for iterative decoding over the BEC [15].
For the same reason, one can expect that trapping sets, or
more specifically absorbing sets, coincide with low-weight
deviations over the AWGN channel, since they have been
frequently observed to cause errors at high SNR during
iterative decoding of LDPC codes over the AWGN channel
[8, 17]. Connections between stopping/absorbing sets and
deviations and their effect on decoding performance are
examined in this section.

3.1. Stopping Sets as Deviations. Stopping sets consist of
a subset S of the variable nodes, such that each check
node connected to an element in S is connected at least
twice. According to the definition of a deviation given in
Definition 4, each check node connected to the variable
nodes in a deviation is connected exactly two times. These
two properties can be used to study the relationship between
stopping sets and their corresponding deviations.

First, consider a computation tree where each of the
variable nodes begins with an assignment of a binary 0.
Then, assign all copies of variable nodes in S to a binary
1. If S does not correspond with a codeword in C, the
resulting configuration on the computation tree will not
be a valid configuration. For example, consider check node
f2 in Figure 2. Each time, check node f2 appears in the
computation tree, it will be connected to three variable nodes
assigned to a binary 1, including the parent variable node and
two child variable nodes. If one of the child variable nodes of
f2 along with all of its descendants is set to a binary 0, check
node f2 will be satisfied. If this is done for every unsatisfied
check node in the computation tree, a deviation is created
that contains only variable nodes in S. Thus, this method
allows one to create a deviation from a stopping set.

Using the method previously described, a deviation can
be constructed using only the variable nodes contained in
a stopping set. This is illustrated in Figure 7(a), where a
portion of the deviation defined by the set S from Figure 2
is given. Since only one of the child variable nodes can be
included in the deviation, it is sufficient to randomly include
v2 and exclude v4, since both nodes are included in S. The
effect of this deviation is now examined over the BEC and
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Figure 7: A small portion of a deviation on a computation tree illustrating the impact of stopping set deviations on the BEC and BSC
channels.

the BSC. Stopping sets are known to cause errors over the
BEC. The reason for this is illustrated by Figure 7(b). When
each variable node in S is received as an erasure ε, it only
takes one erasure below f2 to cause an erasure message to be
sent from f2 to v1. However, even though two erasures are
connected below f2 in Figure 7(b), the same erasure message
is sent up to v1. This example illustrates that a deviation
containing all erasures is sufficient for an erasure output at
the root node. Thus there is a strong connection between
stopping sets and deviations over the BEC, since both cause
errors using iterative decoding and deviations can be created
from stopping sets.

The reason stopping sets will not cause errors as fre-
quently over the BSC is illustrated in Figure 7(c). A deviation
containing only the variable nodes in a stopping set exists
on a computation tree rooted at any one of the variable
nodes in S regardless of the channel. However, the impact of
deviations is not the same across all channels. For example,
if two messages of −1 (representing binary 1s) are being sent
from v2 and v4, the message sent from f2 up to v1 is a +1
(representing a binary 0). This example shows that while a
deviation created from a stopping set is sufficient to cause
erasure outputs from the decoder over the BEC, this same
deviation may not cause errors over the BSC.

From Figure 7, it is clear that deviations created from
stopping sets have a different effect on iterative decoding
over the binary erasure channel and the binary symmetric
channel. While it is not as clear how deviations created from
stopping sets will effect decoding over the AWGN channel,
some similarities can be drawn between the BEC and the
AWGN. In terms of channel LLR costs, an erasure over the
BEC behaves like a LLR cost of zero over the AWGN. A real-
valued LLR interpretation of the BEC channel can be created
using real-valued costs of −1.0, +1.0, and 0.0 to represent a
binary 1, 0, and an erasure ε, respectively. Binary information
is transmitted as x = −1.0 and x = +1.0 over the AWGN
channel, and the probability P(y = +1.0 | x = −1.0) =
P(y = −1.0 | x = +1.0) < P(y = 0.0 | x = −1.0) = P(y =
0.0 | x = +1.0), regardless of the channel SNR. Thus, it is
reasonable to suspect that the AWGN channel behaves more
like the BEC than the BSC, especially at high channel SNR.

3.2. Absorbing Sets as Deviations. Absorbing sets project to
deviations on the computation tree in a different way than

stopping sets. Since each check node connected to a stopping
set S is connected at least twice, a deviation can easily be
defined using only nodes in S on any computation tree
rooted at a node in S. Unlike stopping sets, absorbing sets
can have only a single connection to a check node. When
an absorbing set has a single connection to a check node, it
is not possible to form a deviation on any computation tree
using only the variable nodes in A, unless there is a stopping
set S ⊆ A. If S ⊆ A, a deviation can be formed on the
computation tree by simply avoiding variable nodes in A that
are not in S.

For an absorbing set A that does not contain a stopping
set, it is of interest to know how the absorbing set manifests
itself as a deviation on the computation tree rooted at one of
the variable nodes in A. This manifestation takes the form
of a deviation with as many variable nodes in A as possible.
Because it is known that each variable node is connected
to strictly more satisfied check nodes than unsatisfied check
nodes, it is possible to compute a bound on the number of
variable nodes in a deviation δ that are contained in A for
regular LDPC codes.

Consider an absorbing set A on the Tanner graph of
a (dV ,dF)-regular low-density parity-check code. Let each
variable node vi ∈ A be connected to at least dA >
dV/2 satisfied check nodes. A computation tree rooted at
a variable node vi ∈ A after � iterations is given by R�vi .
A deviation on this computation tree can be constructed
by selecting the nodes in the deviation level-by-level. The
deviation construction begins by including the root node vi
at level � = 0. At the next level, one variable node connected
to each of the check nodes in N(vi) must be included in δ.
When possible, variable nodes in A will always be included
in δ. Therefore, after � = 1 there are at least 1 + dA variable
nodes in δ that are also in A, and at most dV − dA variable
nodes in δ that are not in A. Continuing to level � = 2 in the
computation tree, each of the dA variable nodes in A at level
� = 1 in δ connects to dA − 1 new variable nodes in A and
dV − dA new variable nodes not in A. Each of the dV − dA

variable nodes at level � = 1 in δ that are not in A connects
to dV − 1 variable nodes that are not it A. After � = 2, the
number of variable nodes in δ that are also in A is

|δA| ≥ 1 + dA

�∑

i=1

(dA − 1)i−1. (21)
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Similarly, the total number of variable nodes in δ is

|δ| = 1 + dV

�∑

i=1

(dV − 1)i−1. (22)

Therefore, the number of variable nodes in δ that are not in
A is |δ| − |δA|.

It is clear from (21) and (22) that the lower bound on
the portion of variable nodes in A within the deviation δ
given by |δA|/|δ| approaches zero as � approaches infinity.
Thus, the bound does not appear to be an accurate method
for calculating the true portion. The bound given by (21)
is computed under the worst-case scenario that, after a
deviation reaches a check node with only one connection to
the set A, the descendants of that check node contained in
the deviation do not contain any more variable nodes in A.
On a connected Tanner graph with no nodes of degree one
and dA /=dV , this assumption is most likely never true, since
nodes in A will eventually (with increasing �) be included in
the descendants of the failed check node, and consequently
the variable nodes will also be included in any deviation
which is a manifestation of A.

For finite-length, (dV ,dF)-regular low-density parity
check codes, it is possible to determine the exact number of
variable nodes |δA| after a given number of iterations �. In

order to find |δA|, each variable node vi ∈ A is assigned a
LLR cost of λi = 0.0 and each variable node vj ∈ V \A is
assigned a LLR cost of λj = +1.0. Then, using the resulting
LLR cost vector, MS decoding is performed for � iterations.
The final cost mi for any variable node vi ∈A, is the number
of nodes in the minimum-cost deviation on the computation
tree rooted at vi after � iterations. Deviations for (dV ,dF)-
regular LDPC codes contain a fixed number of variable nodes
determined by (22), and the only way to reduce the cost of
the deviation is to include variable nodes from the set A.
Thus, the minimum-cost deviation on the computation tree
of a (dV ,dF)-regular LDPC code will include the maximum
number of variable nodes in A that is possible, and the MS
decoder will output the cost of this deviation. It is important
to note that the cost of the deviation returned by the MS
decoder corresponds to the number of variable nodes in the
deviation that are not in A. Therefore, in order to determine
the number of variable nodes in the deviation that are in A, it
is necessary to subtract this MS decoder cost from the result
given by (22).

Example 1. Consider the length N = 20, dimension K = 10,
(3, 6)-regular low-density parity-check code defined by the
parity check matrix

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0
0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0
1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0
1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)

A (3, 1) fully absorbing set is defined by the set of variable
nodes A1 = {v3, v7, v16}, where columns 1 through 20 of
H corresponds to the set of variable nodes {v0, v1, . . . , v19}.
After 50 iterations, each of the deviations on each of the
N computation trees contains |δ| ≈ 3.378 × 1015 variable
nodes, as computed by (22). After setting the LLR costs
for variable nodes in A1 to λ = 0.0, and all other LLR
cost to λ = +1.0, the output of the MS decoder after 50
iterations for variable node v7 is a cost of mv7 = 3.044 ×
1014. Therefore, the minimum-weight deviation contains
3.073 × 1015 = 3.378 × 1015 − 3.044 × 1014 variable
nodes also contained in the absorbing set A1. Thus, a
deviation can be formed on the computation tree with
91% of its variable nodes coming from A1. In contrast, the
bound given by (21) for (3, 6)-regular LDPC codes after 50
iterations with dA = 2 only guarantees that 101 variable
nodes from A1 will be included in the minimum weight
deviation. This huge disparity between the bound and the

actual result given by MS decoding reveals the effects of the
assumptions used to derive (21). It is worth noting that the
proportion of variable nodes in A1 in the minimum weight
deviation after 51 and 52 iterations were also 91%, so this
proportion appears to stabilize after a sufficient number of
iterations.

Using this same method on the (3, 3) fully absorbing
set A2 = {v0, v7, v18}, it is found that the minimum weight
deviation after 50 iterations contains 2.696 × 1015 copies
of the variable nodes in A2, equivalent to 78% of the total
number of variable nodes in the deviation. By comparing
the properties of the minimum-weight deviations resulting
from A1 and A2, one might expect that A1 is more likely to
cause errors than A2. This is because 91% of the cost of the
deviation resulting from A1 is determined by the variable
nodes in A1, compared to only 78% for A2. Simulation
results in Section 4 show that A1 causes errors much more
frequently than A2.
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for ifixed = 1, . . . ,N
Set mmin = ∞.
Set χ = {ifixed}.
while mmin > 0.0

for i = 1, . . . ,N
-Set χ = χ

⋃{i}.
-Set λk = 0.0 for all k ∈ χ.
-Set λk = 1.0 for all k ∈ V \ χ.
-Perform MS Decoding for � iterations.

if min
j=1,...,N

mvj < mmin

-Set mmin = min
j=1,...,N

mvj .

-Set jmin = arg min
j=1,...,N

mvj .

end
-Set χ = χ

⋂
({V \ {i}}⋃{ifixed}).

end
-Set χ = χ

⋃{ jmin}.
-Create a binary vector v with vk = 1 if k ∈ χ, and
vk = 0 if k ∈ V \ χ.

-Compute the integar syndrome sint = HvT .
-Compute the binary syndrome sbin = HvT with
Hamming weight ws.

-Compute the integar vector z = HTsbin

if min
k=1,...,M

sint,k ≥ 2

χ is a (|χ|,ws) Stopping Set.
end
χ is a (|χ|,ws) Trapping Set.

if zk <

⌊
dvk
2

⌋

for all k ∈ χ

χ is a (|χ|,ws) Absorbing Set.
end

if zk <

⌊
dvk
2

⌋

for all k = 1, . . . ,N

χ is a (|χ|,ws) Fully Absorbing Set.
end

end
end

Algorithm 1: Iterative problematic trapping set finder.

4. Finding Problematic Trapping Sets

Any set of nodes can be interpreted as a trapping set,
including stopping sets, absorbing sets, and fully absorbing
sets. This is because trapping sets are only defined by the
number of variable nodes in the set and the number of
failed check nodes. In order to simplify analysis, the trapping
sets studied in this paper are restricted to the study of
problematic trapping sets.

Definition 5 (Problematic Trapping Set). A problematic trap-
ping set is a trapping set such that the number of failed check
nodes connected to the trapping set is less than or equal to
the number variable nodes contained in the trapping set.

Because trapping sets with small weight and a small
number of failed check nodes are often the cause of errors
at high SNR [17], it is unlikely that the restriction to

problematic trapping sets will eliminate error patterns of
interest. In Section 3, it was shown that MS decoding can be
used to determine the proportion of variable nodes that are
both inside and outside an absorbing set. The same idea is
used in this section to find problematic trapping sets using
MS decoding. The iterative method given by Algorithm 1
operates by forcing the trapping set to contain one variable
node, and then adding more variable nodes one-by-one that
decrease the cost of the minimum-cost deviation the most.

Once Algorithm 1 reaches cost mmin = 0.0, it is possible
to discover more problematic trapping sets by removing
nodes one-by-one from the set X that result in the smallest
increase in the cost mmin. In order to examine the efficacy of
Algorithm 1, the length N = 20, dimension K = 10, (3, 6)-
regular low-density parity-check code given in Example 1
was used. This code was chosen because the Hamming
weight of all of its codewords could be enumerated, and thus
the minimum distance of the code could be easily computed.
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Table 3: Stopping/trapping/absorbing sets of a length N = 20, dimension K = 10, (3, 6)-regular LDPC code with weight of 3 or less found
using Algorithm 1, and the number of times they were observed after 1000 iterations of SP decoding at SNR = 8.0 dB.

Set Size Dev. % Stop. Abs. Full Abs. Observed

{v0, v17} (2, 2) 74% X 16

{v1, v19} (2, 2) 73% X 7

{v2, v14} (2, 2) 71% X 4

{v3, v16} (2, 2) 72% X 7

{v4, v17} (2, 2) 72% X 28

{v6, v15} (2, 2) 76% X 0

{v7, v17} (2, 2) 73% X 6

{v8, v11} (2, 2) 75% X 21

{v9, v14} (2, 2) 73% X 19

{v10, v18} (2, 2) 73% X 4

{v11, v19} (2, 2) 76% X 28

{v6, v12} (2, 2) 76% X 0

{v6, v12, v15} (3, 1) 100% X X X 908

{v0, v10, v17} (3, 1) 91% X X 9

{v1, v4, v19} (3, 1) 90% X X 20

{v2, v5, v14} (3, 1) 89% X X 6

{v3, v7, v16} (3, 1) 91% X X 26

{v4, v14, v17} (3, 1) 90% X X 35

{v6, v7, v17} (3, 1) 92% X X 0

{v8, v11, v18} (3, 1) 91% X X 28

{v9, v14, v19} (3, 1) 90% X X 20

{v7, v10, v18} (3, 1) 91% X X 16

{v11, v15, v19} (3, 1) 91% X X 17

{v0, v7, v18} (3, 3) 80% X 0

{v1, v14, v19} (3, 3) 64% 0

{v2, v5, v19} (3, 3) 79% X 0

{v0, v4, v14} (3, 3) 79% X 0

{v5, v6, v15} (3, 3) 86% 0

{v7, v12, v15} (3, 3) 86% 0

{v2, v9, v12} (3, 3) 78% X 0

{v6, v11, v12} (3, 3) 85% 0

{v12, v13, v15} (3, 3) 85% 0

{v13, v14, v19} (3, 3) 57% X 0

{v7, v17, v18} (3, 3) 85% 0

Other 275

Applying Alogorithm 1 to this code resulted in a total of 37
trapping sets with parameters shown in Table 3. Note that
the proportion of nodes in each set that are included in the
minimum weight deviation is given by “Dev. %”. This code
was found to have minimum distance equal to 4, so only
stopping/trapping/absorbing sets of weight less than or equal
to 3 are tabulated.

In order to determine how effective Algorithm 1 is at
locating problematic trapping sets, the same length N =
20, dimension K = 10, (3, 6)-regular low-density parity-
check code was simulated using sum-product decoding over
the additive white Gaussian noise channel with an SNR
of Eb/N0 = 8.0 dB. A total of 1500 noncodeword outputs
with weight less than or equal to 3 were observed during
SP decoding after 1000 iterations. It is important to note

that the noncodewords outputs were not simply the last
quantized output given after 1000 iterations. The output
of SP decoding typically changes after each iteration when
it does not converge to a codeword. For this reason, the
noncodeword outputs were computed by averaging the cost
mvi for each variable node vi from i = 1, . . . ,N over the last
200 iterations to compute a final output cost. This is similar
to the method used in [14] for characterizing the changing
outputs of the MS decoder.

Table 3 shows the number of observed output errors,
and compares them to the problematic trapping sets found
using Algorithm 1. Approximately 82% of the observed
errors corresponded to one of the problematic trapping
sets found using Algorithm 1. Also, the number of times a
particular problematic trapping set is observed indicates how
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problematic the set is to the SP decoder. The single most
problematic set, resulting in over 60% of the output errors,
was the (3, 1) set that satisfies the definitions of a stopping
set, absorbing set, and fully absorbing set. Errors falling into
the “Other” category were highly variable, and no specific
output pattern in this set accounted for more than 6 of the
total observed errors.

The problematic trapping sets with the highest propor-
tion of nodes within their corresponding deviation were the
(3, 1) trapping sets. Not surprisingly, the (3, 1) stopping set
has the highest proportion of variable nodes in its deviation.
While the proportions were noticeably different between
different-sized sets, the difference was minimal within sets
of the same size. Furthermore, it is difficult to make any
connections between proportions within sets of the same
size and their corresponding probability of causing an error.
One possible reason for this might be the overlap between
the different problematic trapping sets, and between the
problematic trapping sets and codewords. For example, the
reason that the (2, 2) fully absorbing set {v6, v12} did not
appear in the simulations might be because two of its
variable nodes overlap with the exceptionally problematic
(3, 1) stopping set, and thus any significant channel noise
received by variable nodes v6 and v12 may be highly likely to
cause the (3, 1) stopping set to be output by the decoder.

It is worth noting that the average value of received
information within the absorbing sets of weight less than or
equal to three was y = 0.102115. Recall that a binary 0 is
modulated to x = −1.0, so the mean value of the noise within
the absorbing sets was +1.102115. This cost further justifies
the earlier assertion that the AWGN channel behaves more
like the BEC channel at high SNR than the BSC channel, since
an erasure over the BEC can be interpreted as noise of +1.0
and a bit flip over the BSC can be interpreted as noise of +2.0.

Algorithm 1 was able to find 82% of the most prob-
lematic errors with weight less than dmin. In order to test
the algorithm on an LDPC code with longer block length,
a length N = 200, K = 100, (3, 6)-regular LDPC code
was used. The resulting output of Algorithm 1 was 1019
absorbing sets, 941 fully absorbing sets, and 1 stopping
set, and the sizes of the sets ranged from 3 to 9. Only
sets containing less than 10 variable nodes were considered
problematic, since the code is known to contain a codeword
of weight 10. Simulations were performed using SP decoding
at SNR = 5.0 dB, at which the bit error rate of the code is Pb =
4.8 × 10−9. Overall, 40 noncodeword errors were observed,
of which 20 were error patterns of weight less than 10. Of
these, all were absorbing sets and 19 were fully absorbing sets.
Unlike the results given for the length N = 20 code, only two
of the 20 absorbing sets was found by Algorithm 1. However,
the two that were found were the two smallest absorbing sets,
including (5, 3) and (6, 4) fully absorbing sets.

As expected, the number of trapping sets grows very
large when increasing the size and dimension of the code.
Algorithm 1 is capable of locating the majority of prob-
lematic trapping sets for a small length N = 20 LDPC
code, but for the larger length N = 200 LDPC code it was
only able to identify the two smallest sets observed during
simulations. This is likely due to the fact that the code had

not yet reached its error floor, as evidenced by the fact
that half of the observed error patterns had weight greater
than or equal to the weight of a known codeword. Because
error floors occur at such low bit error rates for large LDPC
codes, it is difficult to observe problematic trapping sets
using simulations. Thus, the effectiveness of Algorithm 1 at
identifying problematic trapping sets remains unknown for
large codes with error floors beyond the reach of simulations.

5. The Weight of Deviations Induced by
Problematic Trapping Sets

In [17], Richardson characterizes trapping sets by their size
and the number of associated failed check nodes. To find
the impact of the trapping sets with respect to probability
of error, Richardson uses simulations that force the noise
in the trapping set and push the received information
away from modulated 0s and towards modulated 1s. The
result is an estimate of the probability of error caused by
trapping sets at high SNR. In this section, a new method
is used to examine the probability of error associated with
trapping sets. Instead of using simulations to estimate the
probability of error, deviations induced by the trapping set
are created to analyze the probability of error. Since bounds
on the probability of error can be derived from deviations,
if one could prove that minimum-weight deviations were
induced by problematic trappings sets and then computed
the weights of the deviations, it may be possible determine
the probability of error associated with trapping sets without
having to rely on simulations.

It may seem surprising that almost all problematic
trapping sets listed in Table 3 result in a deviation where the
variable nodes within the trappings set make up the majority
of the variable nodes within that deviation. For example,
consider the fully absorbing set given by the nodes {v11, v19}.
While there are only two variable nodes contained in the
absorbing set, they make up 76% of the variable nodes in a
deviation that exists on the computation tree rooted at either
variable node within the set. This implies that there might
be a way of cleverly designing deviations which contain a
disproportionately large number of certain variable nodes.
A deviation rooted at variable node v19 after 4 iterations is
shown in Figure 8. This deviation was designed to include
more copies of variable nodes v11 and v19 than other variable
nodes. Overall, the number of copies of each variable node
in the deviation is #v11 = 16, #v19 = 13, #v6 = 9, #v12 = 5,
and #v15 = 3. Although the overall configuration contains
5 different variable nodes, almost 2/3 of them are copies
of v11 or v19. Now, consider the subgraph of the Tanner
graph defined by these 5 variable nodes, shown in Figure 9.
This subgraph defines a (5, 1) stopping set. It was shown in
Section 3.1 that, because it is a stopping set, the deviation
in Figure 8 could continue to grow indefinitely without the
need for variable nodes outside the stopping set.

To construct the deviation in Figure 8, decisions were
made at check nodes f0 and f6. Those decisions are expressed
in the directed bipartite graph shown in Figure 10. The
number of decisions for each check node is equivalent to the
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v19 v19 v19 v15 v6 v11 v19 v12 v6 v11 v19 v12

v6 v6 v11 v19 v11 v19 v11 v19 v11 v19 v11 v19

v11 v11 v11 v11 v12 v6 v11 v15 v12 v6 v11 v15

f0 f0 f4 f0 f6 f5 f4 f0 f6 f4 f4 f0

f4 f5 f0 f1 f0 f4 f0 f9 f0 f5 f0 f9

f5 f4 f5 f6 f9 f6 f5 f1 f9 f6 f5 f1

v11 v12 v19 v6 v19 v6

f6 f9 f5 f6 f4 f6

v6 v11 v11

f5f4f0

v19

Figure 8: Deviation designed to maximize the number of copies of v11 and v19.

v15 v19 v12 v6 v11

f1 f0 f4 f5 f6 f9

Figure 9: Subgraph of the Tanner graph.

number of edges incident to the check node. Check nodes f1,
f4, f5, and f9 each have two copies in the directed graph to
preserve the fact that they have bidirectional edges. However,
check nodes f0 and f6 do not simply have bidirectional edges
connecting them to each of their incident variable nodes,
as demonstrated by the deviation in Figure 8. This comes
from the fact that check nodes with degree higher than 2 are

v15 v19 v12 v6 v11

f11 f12 f01 f02 f03 f04 f41 f42 f51 f52 f61 f62 f63 f91 f92

Figure 10: Subgraph of the Tanner graph with repeated check
nodes and directed edges.

still only connected to 2 variable nodes within the deviation.
Thus, at each check node with degree greater than 2, a
decision is made as to which variable nodes it includes in the
deviation.

Using the adjacency matrix of the directed bipartite
graph, it is possible to compute the number of copies, or
the multiplicity, of each node at each level in the deviation.
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Table 4: The multiplicity of variable nodes contained in the deviation created using the directed graph given in Figure 10.

i v6 v11 v12 v15 v19

0 0 0 0 0 1

2 1 2 0 0 0

4 2 1 1 0 2

6 2 2 2 1 5

8 4 11 2 2 5

20 326 468 158 78 506

60 3.4× 108 4.9× 108 1.7× 108 8.5× 107 5.3× 108

100 3.6× 1014 5.2× 1014 1.8× 1014 8.9× 1013 5.5× 1014

Total 7.1× 1014 1.0× 1015 3.6× 1014 1.8× 1014 1.1× 1015

The method for computing the multiplicity of nodes in
the deviation is similar to the method given in [18] for
computing the multiplicity of nodes on computation trees.
For the directed Tanner graph given in Figure 10, the
adjacency matrix is given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0 1 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0 1 0 0 0 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1 0
0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(24)

The columns and rows of A correspond, in the same order,
to the nodes v6, v11, v12, v15, v19, f01 , f02 , f03 , f04 , f11 , f12 ,
f41 , f42 , f51 , f52 , f61 , f62 , f63 , f91 , and f92 . Beginning with a
vector m0 which has a 1 in the position of the root node
and 0s elsewhere, the number of nodes on each level i of the
deviation can be calculated recursively using

mi =
⎧
⎨

⎩

Ami−1, if i is even,

Ami−1 − Bmi−2, if i is odd,
(25)

where B is used to subtract the parent check nodes at each
check node level in the deviation. The matrix B for the

directed Tanner graph in Figure 10 is given by

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0 0 0 1
0 0 0 0
0 0 0 0
1 1 1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 0 0
0 0 1
1 1 0

0 1
1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (26)

Using the recursive formula given by (25), the number of
variable nodes at different levels in the computation tree
is given in Table 4. The deviation at level i = 100 exists
on the computation tree rooted at variable node v19 after
� = 50 iterations. This deviation contains a total of 3.38 ×
1015 variable nodes, over 63% of which are copies of v11

and v19. Using a similar method to that given in [19], the
effective weight of the deviation can be calculated. First, let
avi be the number of copies of variable node vi within the
deviation, and let b be the total number of variable nodes in
the deviation. The cost of the deviation is modeled by the
normal distribution

N

⎛

⎝
∑

vi∈S

avi
b

,
∑

vi∈S

(
avi
b
σ
)2
⎞

⎠, (27)

where σ2 is the variance of the AWGN noise. This random
variable can be rescaled resulting in the distribution

N

⎛

⎜
⎝

⎛

⎝
∑

vi∈S avi√∑
vi∈S

(
avi
)2

⎞

⎠

2

,

⎛

⎝
∑

vi∈S avi√∑
vi∈S

(
avi
)2

⎞

⎠

2

σ2

⎞

⎟
⎠, (28)
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where the mean

⎛

⎝
∑

vi∈S avi√∑
vi∈S

(
avi
)2

⎞

⎠

2

, (29)

is the weight of the deviation. Note that if all avi were equal,
the weight of the set S would be equal to the number of
nodes it contains, which is consistent with the notion of
Hamming weight when S is equal to a codeword. From
Table 4, the weight of the deviation created from the directed
Tanner graph in Figure 10 after � = 50 iterations is 3.8784.
This is less than the Hamming weight of the minimum
distance codeword in the code, which has weight 4.0. Thus,
the minimum weight of deviations on the computation tree
rooted at v19 is probably less than the minimum distance of
the code.

6. Conclusion

Practical methods for predicting and understanding the
performance of low-density parity-check codes with iterative
decoders are needed in order to avoid the use of codes with
error floors. Trapping sets, which include absorbing sets and
stopping sets, provide insight into the error mechanisms of
iterative decoders but are too imprecise to be used to make
design decisions with respect to error floors. Deviations on
computation trees are precise and can be used to compute
strict upper bounds on the performance of MS and SP
decoding, but computing these bounds quickly becomes
computationally intractable. The paper examined the con-
nections between trapping sets and their corresponding
deviations through the notion of problematic trapping sets
in an attempt to find a practical and precise method for
predicting the performance of LDPC codes with iterative
decoding.

It was shown that the variable nodes in a stopping set
can be used to define a deviation, while trapping sets and
absorbing sets only define a deviation if a subset of their
variable nodes forms a stopping set. When trapping sets and
absorbing sets do not include a stopping set, it is necessary
to include additional variable nodes in order to construct
a corresponding deviation. The number and proportion of
variable nodes outside the set that are needed to construct the
deviation can be found experimentally using a modification
of the MS decoder. This modified MS algorithm leads to
an iterative method for identifying low-weight problematic
trapping sets in an LDPC code. Simulation results demon-
strate that this method is capable of finding many of the
low-weight trapping sets that determine the performance of
LDPC codes at moderate SNRs. The efficacy of this algorithm
is limited by computational constraints.

Finally, an analytical approach for determining the
weight of deviations induced by trapping sets on the
computation tree was introduced. This approach involves
determining the minimum-weight stopping set that contains
a given trapping set, and then determining a directed Tanner
graph from the stopping set that favors certain variable nodes
within the trapping set. It was then shown that the effective

weight of the deviation can be found using a recursive
method for computing the multiplicity of variable nodes
within the deviation, In one example, it was proven that a
deviation exists on the computation tree with weight less
than the Hamming weight of the code. This result shows that
trapping sets probably result in a necessary condition for an
error to occur during iterative decoding, and in certain cases,
this condition is satisfied with probability higher than the
probability of an ML codeword error.
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