N94-16509

Search for Optimal Distance Spectrum Convolutional Codes *

\qquad

Department of Electrical Engineering University of Notre Dame
Notre Dame, Indiana 46556

Presented at the $4^{\text {th }}$ Annual Argonne Symposium for Undergraduates in Science, Engineering, and Mathematics

Argonne National Laboratory

6 November 1993

[^0]
Introduction

- In order to communicate reliably and to reduce the required _transmitter power, NASA uses coded communication systems on most of their deep space satellites and probes (e.g. Pioneer, -Voyager, Galileo, and the TDRSS network).
©These communication systems use binary convolutional codes. Better codes make the system more reliable and require less -transmitter power.
- However, there are no good construction techniques for convo-- lutional codes. Thus, to find good convolutional codes requires an exhaustive search over the ensemble of all possible codes.
(In this paper, an efficient convolutional code search algorithm -was implemented on an IBM RS6000 Model 580. The combination of algorithm efficiency and computational power enabled - us to find, for the first time, the optimal rate $1 / 2$, memory 14 , convolutional code.

∞
 Jigital Transmission Over a Noisy Channel

- When binary digital data is transmitted over a real channel, it _ is subject to noise (we will assume Additive White Gaussian Noise). The noise can cause errors to occur at the receiver.
- The acceptable bit-error-rate (BER) at the receiver depends on the type of data being transmitted. For example, video signals
- are more forgiving of errors than computer data.
- One of the goals of forward error correction (FEC) coding, is to allow the receiver to correct errors caused by the channel and
- thus to increase the reliability of the system and/or reduce the required signal energy.

Example (Binary Numbers)

- To transmit a 5 in binary, the codeword 101 would be sent. This _ sequence of transmitted bits is then subject to channel noise。
If the channel noise is large enough relative to the transmitted
- signal energy (per bit), the receiver may interpret a transmitted 1 as a 0 , or vice-versa.
- For example, an optimum receiver would interpret thereceived
- signal shown above as 111 or 8 . In this case, the receiver makes \equiv one error which in turn causes one codeword, 101, to be con-
- verted into another codeword, 111.
- The probability that a 1 is received as a 0 and vice versa is called the channel transition probability, p, and is a function of
- the signal-to-noise ratio (SNR),

$$
S N R=\frac{E_{S}}{N_{0}}
$$

- where E_{S} is the average transmitted signal energy per bit and N_{0} is the one sided noise spectral density (a measure of the noise - power).

Example (cont.)

c Given a channel transition probability of p, the probability that
-101 is transmitted and 111 is received is given by

$$
P_{101,111}=P_{1}=(1-p)^{2} p
$$

This probability can be reduced by increasing the SNR which - in turn causes a reduction in p.

- In this example, one bit error causes one codeword to be conversed into another codeword. We say that this code has mini-
- mum free Hamming distance, of $d_{f}=1$.

- In general, each codeword in this code may be converted into 3 different codewords by a single bit error with probability $P_{1}, 3$
- different codewords by two bit errors with probability

$$
P_{2}=(1-p) \boldsymbol{p}^{2}<P_{1}
$$

and one other codeword with three bit errors with probability

$$
P_{3}=(1-p) \boldsymbol{p}^{2}<P_{2}
$$

- The overall probability of codeword error is

$$
P_{C}=3 P_{1}+3 P_{2}+1 P_{3}
$$

- which can be reduced by increasing the SNR.

_Geometric Interpretation and Hamming Distance

- Intuitive insight into the error mechanism can be obtained using a geometric perspective.
r From this point of view, each codeword in the previous example -is considered a vector in a 3-dimensional vector spaces The distance between two vectors is the Hamming Distance, d_{H}, which - is just the number of positions in which two vectors differ.
- The probability that a codeword is converted into another codeword at a Hamming distance of d is

$$
P_{d}=(1-p)^{3-d} p^{d}
$$

- Notice, that as the Hamming distance between two codewords _increases P_{d} decreases!
For a fixed SNR and thus a fixed channel transition probability, - p, the probability of a codeword error can be reduced by in_ creasing the Hamming distance between all pairs of codewords.

Example: Repetition Coding

$_$simple coding technique is known as repetition coding. In this scheme each bit is simply transmitted twice in succession.
, Continuing the previous example, repetition coding leads to the ollowing set of codewords.

- The mininum free Hamming distance is now $d_{f}=2$ and the -overall probability of codeword error is

$$
P_{C}^{\prime}=3 P_{2}+3 P_{4}+1 P_{6}<P_{C},
$$

_because each codeword has 3 codewords at distance 2, 3 codewords at distance 4, and 1 codeword at distance 6.

- The enumeration of the distances between one codeword and all _other codewords in the code is called the code distance spectrum and is usually depicted in the following way

d	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
N_{d}	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1}$

Coding Performance Tradeoffs

c The probability of codeword error in digital communications systems on the AWGN channel is determined primarily by three -factors:
_ 1. SNR,
2. d_{f}, the code's minimum distance, and

- 3. the code's distance spectrum.
- Historically, due to the expense of putting large power supplies in space and the relatively large amount of available bandwidth, -NASA has chosen to improve system performance by using coding and expanding the required transmission bandwidth.
- With most of its satellites and deep space probes, NASA has _chosen to use convolutional codes because of their superior performance characteristics in this application.

Convolutional Codes

- A binary linear convolutional code with rate k / n is a set of semiinfinite sequences generated by a finite state machine character_ized by three parameters:

1. k, the number of inputs bits per encoding interval,
2. n, the number of output bits per encoding interval,

- 3. m, the memory order of the finite state machine.

The finite state machine has 2^{m} states.
1 During each encoding interval, an (n, k, m) convolutional code $=$ encodes k information bits into n bits based on the current block of k bits and the past m blocks of k bits.
e The minimum distance between codewords and thus the perfor--mance of a convolutional code increases as the rate decreases and the memory increases.

A (2,1,2) Convolutional Code

- A rate $1 / 2$, convolutional code is specified by a pair of generators denoted by $(g 1, g 2)$ that describe the connections from the shift
- register to the output.
_ The (2,1,2) code shown above has generators

$$
\begin{aligned}
& g 1=101=5 \\
& g 2=010=2
\end{aligned}
$$

Optimal Distance Spectrum Codes

- The maximum free distance of a $(2,1,14)$ code is known to be 18. Many good codes have been found that have this free distance. The goal of this research was to find the "best" rate $1 / 2$, -memory 14 convolutional code with free distance 18.
- One way to do this is by finding the distance spectrum of every possible code.
- Those codes with fewer paths at a given distance have a lower -probability of error, and thus are considered better. If the number of paths are recorded for each code having a minimum free -distance of 18 , the list could then be sorted and the best code found.
- For example, the maximal free distance $(2,1,14)$ code with gen_erators $(g 1, g 2)=(56721,61713)$ has 33 paths of weight 18. If another $(2,1,14)$ code with fewer weight 18 paths could be found, -this code would be a better code.

「he Problem with Finding Optimal Codes

- Finding the optimal code would be easy if the all of the codes' distance spectra could be evaluated and sorted in a reason--able amount of time. However, there are $1,073,741,824$ possible codes of memory length 14.
- Finding a single ($2,1,14$) code's distance spectrum is a complicated process that takes approximately 30 CPU seconds on the IBM RS6000 Model 580. At this rate, a search of every code _would take roughly one millenia, not including the sort routine to find the best code.
- Thus, to make any search feasible, it is necessary to first pare down the number of codes that must be tested by using other techniques for detecting inferior codes.
- In addition, all catastrophic codes must be eliminated before attempting to find their distance spectrum. Catastrophic codes -are codes in which a finite weight information sequence can gen_erate an infinite weight codeword.
- This characteristic causes an infinite loop in the distance spectrum algorithm; if not eliminated these codes would make the search impossible.
- Unfortunately, an algorithm to recognize catastrophic codes is -very complicated and time consuming because it involves factoring.

I Iethods of Reducing the Number of Codes

- The number of codes can be reduced by making certain restric--tions regarding the structure of the codes. These restrictions are based on known properties of convolutional codes and do not affect the search results in any way.
- The two primary restrictions used were
_ 1. both generators must start with a 1 , and

2. one generator must end with a 1.

These restrictions reduce the number of codes by a factor of 8 .
-Second, an upper bound on the free distance can be utilized to eliminate codes that cannot achieve the known maximal free
-distance. This bound uses the row distance function, which is a decreasing function whose limit is the free distance.

- For most codes, the row distance function converges quickly and -is a very effective way of reducing the number of codes.
-Third, codes whose generators are mirror images of each other can be eliminated, because they generate identical sets of code--words and thus identical distance spectrums.

Гffectiveness of Schemes to Eliminate Codes Initially, there are $1,073,741,824$ possible codes and the search \sim would have taken 1021 years.

- After placing the two restrictions on the code generators, the number is reduced to $134,217,728$. This search would have re-
- quired 127 years.
- The row distance evaluations, which require significant computational time, reduce the number of codes to a few hundred.

The Optimal Distance Search : FAST

- With a reduced list of generators, evaluating the distance spec-
- trum becomes feasible. This was done by implementing a version of the FAST algorithm (A Fast Algorithm for Searching a
- Tree) published by Cedervall and Johannesson.
- Given a set of generators, the FAST algorithm builds and searches the code tree to determine the weight of all relevant code se-
$=$ quences. Using column distance function bounds to limit and speed the search, it ultimately returns the number of paths for
- the ten lowest weights.
- Efficient programming and compiler optimization resulted in a CPU time of 30 seconds for the distance spectrum evaluation of
- one ($2,1,14$) code.
_ After using FAST to evaluate the candidate codes, the distance spectrum results must be sorted.

Search Results and Conclusions

- The $(2,1,14)$ code with generators $(g 1, g 2)=(63057,44735)$ was found to be the optimal distance spectrum code.
- This code has only 26 weight 18 paths, as opposed to the previously known best $(2,1,14)$ code which has 33 weight 18 paths. -Thus, the new code is optimum for high signal-to-noise ratios.
- The new code is being simulated using computer models Notre ${ }^{-}$Dame and a real decoder at the Jet Propulsion Laboratory in -Pasadena, California, to determine if it is the best code for -moderate SNR's.
-The techniques used in this code search are being refined and extended to find more complex codes for future NASA applica--tions.

$$
\text { Optimal Rate } 1 / 2, K=15(m=14) \text {, Convolutional Codes }
$$

The rate $1 / 2, K=15(m=14)$ convolutional code found by Cedervall and Johanneson [1] is the optimum distance spectrum (ODS) code. The generators for this code are

$$
\begin{aligned}
& g^{(1)}=63057=1+D+D^{4}+D^{5}+D^{9}+D^{11}+D^{12}+D^{13}+D^{14} \\
& g^{(2)}=44735=1+D^{3}+D^{6}+D^{7}+D^{8}+D^{10}+D^{11}+D^{12}+D^{14}
\end{aligned}
$$

and its distance spectrum is

d	18	19	20	21	22	23	24	25	26	27
N_{d}	26	0	165	0	845	0	4844	0	28513	0

The generators for the code in Lin and Costello [2] are

$$
\begin{aligned}
& g^{(1)}=56721=1+D^{2}+D^{3}+D^{4}+D^{6}+D^{7}+D^{8}+D^{10}+D^{14} \\
& g^{(2)}=61713=1+D+D^{5}+D^{6}+D^{7}+D^{8}+D^{11}+D^{13}+D^{14}
\end{aligned}
$$

and its distance spectrum is

d	18	19	20	21	22	23	24	25	26	27
N_{d}	33	0	136	0	835	0	4787	0	27941	0

Both of these codes are invariant to 180° rotations of the QPSK signal set.

References

[1] M. Cedervall and R. Johanneson, "A Fast Algorithm for Computing Distance Spectrum of Convolutional Codes," IEEE Trans. Inform. Theory, IT-35, pp. 1146-1159, November 1989.
[2] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice Hall, New Jersey, 1983.

-
-

[^0]: *This work was supported in part by NASA Grant NAG5-557 and NSF Grant NCR89-03429

