1,333 research outputs found

    Morphometric analysis of bite mark patterns caused by domestic dogs (Canis lupus familiaris) using dental wax registers

    Get PDF
    Dog bites are a known public health problem involving physical, mental and emotional traumas. From a forensic point of view, it has been stated that their morphological characters, and the intercanine and interincisive measurements, could allow a taxonomic and specific identification of the implicated animal. The aim of this study was to differentiate and identify the biological profile of a potential aggressor dog by analysing eight morphometric bite patterns belonging to three different dog breeds. The data obtained were analyzed following three categories: a) breeds; b) sexes among breeds; and c) sex within breed. Significant differences were detected among the variables (p <= 0.05), but only the maximum maxillary intercanines width (MaxCW) allowed a breed differentiation. The other variables allowed a differentiation between two breeds or one breed over the others. The principal components analysis (PCA) allowed visualizing the degree of dispersion and relationship among the scores. It showed three well-defined and separated breed groups, and different degrees of dispersion within and among breeds. The most important variable for such a differentiation was MaxCW. When considering sex among breeds for males, it showed a statistically significant difference, but only the diastema located between the third left mandibular, incisive and the left mandibular canine (C-I-ManL) allowed breed differentiation. For females, only MaxCW allowed a differentiation among breeds. The multivariate analysis permitted with a 95 % confidence interval, a breed and sex differentiation. Besides, the PCA models allowed classifying, identifying, separating and graphically showing the relationship among the variables. This made it possible to differentiate between breeds and sexes. Due to the large range of dog breeds around the world, this multivariate analysis could also help determining the dog's weight and size, narrowing down towards an approximate number of offending dogs, focussing on a certain kind of dog breed, and pinpointing any suspect dog

    Dynamics of a classical gas including dissipative and mean field effects

    Full text link
    By means of a scaling ansatz, we investigate an approximated solution of the Boltzmann-Vlasov equation for a classical gas. Within this framework, we derive the frequencies and the damping of the collective oscillations of a harmonically trapped gas and we investigate its expansion after release of the trap. The method is well suited to studying the collisional effects taking place in the system and in particular to discussing the crossover between the hydrodynamic and the collisionless regimes. An explicit link between the relaxation times relevant for the damping of the collective oscillations and for the expansion is established.Comment: 4 pages, 1 figur

    Periodic orbit resonances in layered metals in tilted magnetic fields

    Full text link
    The frequency dependence of the interlayer conductivity of a layered Fermi liquid in a magnetic field which is tilted away from the normal to the layers is considered. For both quasi-one- and quasi-two-dimensional systems resonances occur when the frequency is a harmonic of the frequency at which the magnetic field causes the electrons to oscillate on the Fermi surface within the layers. The intensity of the different harmonic resonances varies significantly with the direction of the field. The resonances occur for both coherent and weakly incoherent interlayer transport and so their observation does not imply the existence of a three-dimensional Fermi surface.Comment: 4 pages, RevTeX + epsf, 2 figures. Discussion of other work revised. To appear in Phys. Rev. B, Rapid Commun., October 1

    Synapse efficiency diverges due to synaptic pruning following over-growth

    Full text link
    In the development of the brain, it is known that synapses are pruned following over-growth. This pruning following over-growth seems to be a universal phenomenon that occurs in almost all areas -- visual cortex, motor area, association area, and so on. It has been shown numerically that the synapse efficiency is increased by systematic deletion. We discuss the synapse efficiency to evaluate the effect of pruning following over-growth, and analytically show that the synapse efficiency diverges as O(log c) at the limit where connecting rate c is extremely small. Under a fixed synapse number criterion, the optimal connecting rate, which maximize memory performance, exists.Comment: 15 pages, 16 figure

    Tomonaga-Luttinger features in the resonant Raman spectra of quantum wires

    Full text link
    The differential cross section for resonant Raman scattering from the collective modes in a one dimensional system of interacting electrons is calculated non-perturbatively using the bosonization method. The results indicate that resonant Raman spectroscopy is a powerful tool for studying Tomonaga-Luttinger liquid behaviour in quasi-one dimensional electron systems.Comment: 4 pages, no figur

    Determination of the Fermi Velocity by Angle-dependent Periodic Orbit Resonance Measurements in the Organic Conductor alpha-(BEDT-TTF)2KHg(SCN)4

    Full text link
    We report detailed angle-dependent studies of the microwave (f=50 to 90 GHz) interlayer magneto-electrodynamics of a single crystal sample of the organic charge-density-wave (CDW) conductor alpha-(BEDT-TTF)2KHg(SCN)4. Recently developed instrumentation enables both magnetic field (B) sweeps for a fixed sample orientation and, for the first time, angle sweeps at fixed f/B. We observe series' of resonant absorptions which we attribute to periodic orbit resonances (POR) - a phenomenon closely related to cyclotron resonance. The angle dependence of the POR indicate that they are associated with the low temperature quasi-one-dimensional (Q1D) Fermi surface (FS) of the title compound; indeed, all of the resonance peaks collapse beautifully onto a single set of f/B versus angle curves, generated using a semiclassical magneto-transport theory for a single Q1D FS. We show that Q1D POR measurements provide one of the most direct methods for determining the Fermi velocity, without any detailed assumptions concerning the bandstructure; our analysis yields an average value of v_F=6.5x10^4 m/s. Quantitative analysis of the POR harmonic content indicates that the Q1D FS is strongly corrugated. This is consistent with the assumption that the low-temperature FS derives from a reconstruction of the high temperature quasi-two-dimensional FS, caused by the CDW instability. Detailed analysis of the angle dependence of the POR yields parameters associated with the CDW superstructure which are consistent with published results. Finally, we address the issue as to whether or not the interlayer electrodynamics are coherent in the title compound.Comment: 28 pages, including 6 figures. Submitted to PR

    Diffusion of gold nanoclusters on graphite

    Full text link
    We present a detailed molecular-dynamics study of the diffusion and coalescence of large (249-atom) gold clusters on graphite surfaces. The diffusivity of monoclusters is found to be comparable to that for single adatoms. Likewise, and even more important, cluster dimers are also found to diffuse at a rate which is comparable to that for adatoms and monoclusters. As a consequence, large islands formed by cluster aggregation are also expected to be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling law for the dependence on size of the diffusivity of large clusters, we find that islands consisting of as many as 100 monoclusters should exhibit significant mobility. This result has profound implications for the morphology of cluster-assembled materials

    Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD&#8201;142527 disc

    Get PDF
    We present 3D hydrodynamical models of the HD142527 protoplanetary disc, a bright and well-studied disc that shows spirals and shadows in scattered light around a 100 au gas cavity, a large horseshoe dust structure in mm continuum emission, together with mysterious fast radial flows and streamers seen in gas kinematics. By considering several possible orbits consistent with the observed arc, we show that all of the main observational features can be explained by one mechanism - the interaction between the disc and the observed binary companion. We find that the spirals, shadows, and horseshoe are only produced in the correct position angles by a companion on an inclined and eccentric orbit approaching periastron - the 'red' family from Lacour et al. Dust-gas simulations show radial and azimuthal concentration of dust around the cavity, consistent with the observed horseshoe. The success of this model in the HD142527 disc suggests other mm-bright transition discs showing cavities, spirals, and dust asymmetries may also be explained by the interaction with central companions
    corecore