1,556 research outputs found
Noninvasive spinal neuromodulation mitigates symptoms of idiopathic overactive bladder
Altres ajuts: Academy of Finland 129164Overactive bladder (OAB) affects 12 to 30% of the world's population. The accompanying urinary urgency, frequency and incontinence can have a profound effect on quality of life, leading to depression, social isolation, avoidance of sexual activity and loss of productivity. Conservative measures such as lifestyle modification and pelvic floor physical therapy are the first line of treatment for overactive bladder. Patients who fail these may go on to take medications, undergo neuromodulation or receive injection of botulinum toxin into the bladder wall. While effective, medications have side effects and suffer from poor adherence. Neuromodulation and botulinum toxin injection are also effective but are invasive and not acceptable to some patients. We have developed a novel transcutaneous spinal cord neuromodulator (SCONE™,) that delivers multifrequency electrical stimulation to the spinal cord without the need for insertion or implantation of stimulating electrodes. Previously, multifrequency transcutaneous stimulation has been demonstrated to penetrate to the spinal cord and lead to motor activation of detrusor and external urethral sphincter muscles. Here, we report on eight patients with idiopathic overactive bladder, who underwent 12 weeks of SCONE™ therapy. All patients reported statistically significant clinical improvement in multiple symptoms of overactive bladder, such as urinary urgency, frequency and urge incontinence. In addition, patients reported significant symptomatic improvements as captured by validated clinical surveys. SCONE™ therapy represents the first of its kind therapy to treat symptoms of urgency, frequency and urge urinary incontinence in patients with OAB. The study was listed on clinicaltrials.gov ()
Improved standardization of flow cytometry diagnostic screening of primary immunodeficiency by software-based automated gating
Background
Multiparameter flow cytometry (FC) is essential in the diagnostic work-up and classification of primary immunodeficiency (PIDs). The EuroFlow PID Orientation tube (PIDOT) allows identification of all main lymphocyte subpopulations in blood. To standardize data analysis, tools for Automated Gating and Identification (AG&I) of the informative cell populations, were developed by EuroFlow. Here, we evaluated the contribution of these innovative AG&I tools to the standardization of FC in the diagnostic work-up of PID, by comparing AG&I against expert-based (EuroFlow-standardized) Manual Gating (MG) strategy, and its impact on the reproducibility and clinical interpretation of results.
Methods
FC data files from 44 patients (13 CVID, 12 PID, 19 non-PID) and 26 healthy donor (HD) blood samples stained with PIDOT were analyzed in parallel by MG and AG&I, using Infinicyt (TM) software (Cytognos). For comparison, percentage differences in absolute cell counts/mu L were calculated for each lymphocyte subpopulation. Data files showing differences >20% were checked for their potential clinical relevance, based on age-matched percentile (p5-p95) reference ranges. In parallel, intra- and inter-observer reproducibility of MG vs AG&I were evaluated in a subset of 12 samples.
Results
The AG&I approach was able to identify the vast majority of lymphoid events (>99%), associated with a significantly higher intra- and inter-observer reproducibility compared to MG. For most HD (83%) and patient (68%) samples, a high degree of agreement (<20% numerical differences in absolute cell counts/mu L) was obtained between MG and the AG&I module. This translated into a minimal impact (<5% of observations) on the final clinical interpretation. In all except three samples, extended expert revision of the AG&I approach revealed no error. In the three remaining samples aberrant maturation and/or abnormal marker expression profiles were seen leading in all three cases to numerical alarms by AG&I.
Conclusion
Altogether, our results indicate that replacement of MG by the AG&I module would be associated with a greater reproducibility and robustness of results in the diagnostic work-up of patients suspected of PID. However, expert revision of the results of AG&I of PIDOT data still remains necessary in samples with numerical alterations and aberrant B- and T-cell maturation and/or marker expression profiles
The Bulge Radial Velocity Assay for RR Lyrae stars (BRAVA-RR) DR2: a Bimodal Bulge?
Radial velocities of 2768 fundamental mode RR Lyrae stars (RRLs) toward the
Southern Galactic bulge are presented, spanning the southern bulge from -8 < l
< +8 and -3 < b <-6. Distances derived from the pulsation properties of the
RRLs are combined with Gaia proper motions to give constraints on the orbital
motions of 1389 RRLs. The majority (~75%) of the bulge RRLs have orbits
consistent with these stars being permanently bound to <3.5 kpc from the
Galactic Center, similar to the bar. However, unlike the bulge giants, the RRLs
exhibit slower rotation and a higher velocity dispersion. The higher velocity
dispersion arises almost exclusively from halo interlopers passing through the
inner Galaxy. We present 82 stars with space velocities > 500 km/s and find
that the majority of these high-velocity stars are halo interlopers; it is
unclear if a sub-sample of these stars with similar space velocities have a
common origin. Once the 25% of the sample represented by halo interlopers is
cleaned, we can clearly discern two populations of bulge RRLs in the inner
Galaxy. One population of RRLs is not as tightly bound to the Galaxy (but is
still confined to the inner ~3.5 kpc), and is both spatially and kinematically
consistent with the barred bulge. The second population is more centrally
concentrated and does not trace the bar. One possible interpretation is that
this population was born prior to bar formation, as its spatial location,
kinematics and pulsation properties suggest, possibly from an accretion event
at high redshift.Comment: accepted for publication in the Astronomical Journa
Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle
Global aquatic ecosystems are under increasing threat from anthropogenic activity, as well as being exposed to past (and projected) climate change, however, the nature of how climate and human impacts are recorded in lake sediments is often ambiguous. Natural and anthropogenic drivers can force a similar response in lake systems, yet the ability to attribute what change recorded in lake sediments is natural, from that which is anthropogenic, is increasingly important for understanding how lake systems have, and will continue to function when subjected to multiple stressors; an issue that is particularly acute when considering management options for aquatic ecosystems. The duration and timing of human impacts on lake systems varies geographically, with some regions of the world (such as Africa and South America) having a longer legacy of human impact than others (e.g., New Zealand). A wide array of techniques (biological, chemical, physical and statistical) is available to palaeolimnologists to allow the deciphering of complex sedimentary records. Lake sediments are an important archive of how drivers have changed through time, and how these impacts manifest in lake systems. With a paucity of ‘real-time’ data pre-dating human impact, palaeolimnological archives offer the only insight into both natural variability (i.e., that driven by climate and intrinsic lake processes) and the impact of people. While there is a need to acknowledge complexity, and temporal and spatial variability when deciphering change from sediment archives, a palaeolimnological approach is a powerful tool for better understanding and managing global aquatic resources
Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells
Simple Summary Glucocorticoid therapy resistance in B-cell malignancies is often associated with constitutive activation of tyrosine kinases. Novel anticancer drugs targeting hyperactivated tyrosine kinases, such as Bruton's tyrosine kinase (BTK), have, therefore, gained much interest over the past few decades and have already been approved for clinical use. In this study, we compared the therapeutic efficacy of the phytochemical kinase inhibitor withaferin A with the clinically approved BTK inhibitor ibrutinib to target hyperactivated tyrosine kinase signaling in glucocorticoid-resistant multiple myeloma cells. Our results demonstrate that withaferin A-induced cell death of glucocorticoid-resistant MM1R cells involves covalent cysteine targeting of multiple Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including BTK. Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells' uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA's promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM
Trophic state alters the mechanism whereby energetic coupling between photosynthesis and respiration occurs in Euglena gracilis
- The coupling between mitochondrial respiration and photosynthesis plays an important role in the energetic physiology of green plants and some secondary-red photosynthetic eukaryotes(diatoms), allowing an efficient CO2 assimilation and optimal growth. - Using the flagellate Euglena gracilis, we first tested if photosynthesis–respiration coupling occurs in this species harbouring secondary green plastids (i.e. originated from an endosymbiosis between a green alga and a phagotrophic euglenozoan). Second, we tested how the trophic state (mixotrophy and photoautotrophy) of the cell alters the mechanisms involved in the photosynthesis–respiration coupling. - Energetic coupling between photosynthesis and respiration was determined by testing the effect of respiratory inhibitors on photosynthesis, and measuring the simultaneous variation of photosynthesis and respiration rates as a function of temperature (i.e. thermal response curves). The mechanism involved in the photosynthesis–respiration coupling was assessed by combining proteomics, biophysical and cytological analyses. - Our work shows that there is photosynthesis–respiration coupling and membrane contacts between mitochondria and chloroplasts in E. gracilis. However, whereas in mixotrophy adjustment of the chloroplast ATP/NADPH ratio drives the interaction, in photoautotrophy the coupling is conditioned by CO2 limitation and photorespiration. This indicates that maintenance of photosynthesis–respiration coupling, through plastic metabolic responses, is key to E. gracilis functioning under changing environmental conditions
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
- …