305 research outputs found

    Prompt gamma activation studies on archaeological objects at a pulsed neutron source

    Get PDF
    The potential of Prompt Gamma Activation Analysis (PGAA) for non-destructive quantitative investigation of archaeological objects at a pulsed neutron spallation source was studied. Experiments were performed on the ROTAX time-of-flight diffractometer of the ISIS neutron source on a chalcolithic copper axe, a limestone sample from the ancient Quarry of Masarah (Egypt), a Roman bronze fibula and two fragments of glass from the Roman Villa Adriana. For reference and comparison, measurements were also performed at the PGAA station of the Budapest research reactor. It is found that the performance of a PGAA analysis at a pulsed source, with a make-shift set-up on an instrument designed for diffraction studies, cannot match the achievable results at a dedicated PGAA facility at a reactor source. However, the possibility of performing different investigations, e.g., neutron diffraction for structure analysis and PGAA for elemental analysis, at a single facility on one and the same object remains attractive and offers useful applications in the field of cultural heritage

    Study of archaeological samples via neutron techniques

    Get PDF
    The discovery of ancient artefacts and artworks usually raises a variety of questions such as the correct determination of their historical and cultural timeframe, the place and method of production, the choice of treatments and conditions for restoration and preservation. In the field of archaeometry, new perspectives are opened up by the use of neutron techniques. Results on a selection of archaeological samples, Etruscan bronzes coming from the Museo Nazionale di Villa Giulia and Roman marbles from Villa Adriana (Tivoli, Rome), are presented. ANCIENT CHARM project aims to develop a quantitative 3D imaging technique. This work presents some of results on a series of experimental investigation performed on test samples called “Black Boxes”. Elements’ and compounds’ identification on the internal features of the boxes are obtained by the combined use of different neutron analysis methods. The presented studies successfully showed the high potential of neutron techniques in the study of ancient archaeological artefacts

    The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Get PDF
    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10 A^- 1. This opens a still unexplored region of the kinematical (q,w) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure

    PIH7 QUALITY OF LIFE OF ITALIAN GENERAL POPULATION AGED 40 TO 79 YEARS OLD

    Get PDF

    Texture and structure studies on marbles from Villa Adriana via neutron diffraction technique

    Get PDF
    The primary objective of this work is the characterisation of ancient roman marble fragments through neutron diffraction, a non-destructive experimental method. The neutron diffractometer ROTAX, operating at the pulsed neutron source ISIS, in the UK has been used to determine composition down to a 0.5 wt% level and to obtain information on preferred orientations of grains in the marble tiles

    Diamond detector for high rate monitors of fast neutrons beams

    Get PDF
    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t0. Fast acquisition is needed since the peak count rate is very high (~800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range Edep = 1.5-7 MeV ascribed to neutron elastic scattering on 12C; iii) large pulse amplitude neutron events with En < 7 MeV ascribed to 12C(n,α)9Be and 12C(n,n')3α

    Time-stability of a Single-crystal Diamond Detector for fast neutron beam diagnostic under alpha and neutron irradiation

    Get PDF
    Single-crystal Diamond Detectors (SDDs), due to their good charge carrier transport properties, low leakage and therefore good energy resolution, are good candidates for fast neutron measurement on pulsed spallation sources and fusion plasma experiments. Moreover, diamonds are known to be resistant to neutron irradiation. Nevertheless, measurements show transient effects during irradiation with ionizing particles, as the alpha particle calibration sources. The decrease of the detector counting rate of a counting chain and the pulse height are interpreted as due to a charge trapping inside the detector, which modifies the drift electric field. These instabilities are strongly dependent on the specific type of the interaction. Measurements have been carried out with both alpha particles in the laboratory and neutrons at the ISIS neutron spallation source. We show that these polarization effects are not permanent: the detector performances can be restored by simply inverting the detector bias high voltage. Prime Novelty Statement The measurements described in the paper were performed in order to study the polarization effect in Single-crystal Diamond Detector. This effect was observed under alpha particle and neutron irradiation. With the Transient Current Technique an interpretation of the effect is given

    Single-crystal Diamond Detector for DT and DD plasmas diagnostic

    Get PDF
    Single-crystal Diamond Detectors (SDD) are good candidates as high-energy neutron detectors in the extreme conditions of the next generation thermonuclear fusion facilities like the ITER experiment, due to their high radiation hardness, fast response time and small size. Neutron detection in SDDs is based on the collection of electron-hole pairs produced by charged particles generated by neutron interaction on 12C. In this work the SDD response to neutrons with energies between 2.8 and 3.8MeV was determined at the Legnaro CN accelerator at the INFN Laboratories in Legnaro (PD, Italy). This work is relevant for the characterization of SDDs response functions, which are key points for Deuterium-Deuterium and Deuterium-Tritium plasma diagnostic

    Fast electron transport and heating in solid-density matter

    Get PDF
    Two experiments have been performed to investigate heating by high-intensity laser-generated electrons, in the context of studies of the fast ignitor approach to inertial confinement fusion (ICF). A new spectrometer and layered targets have been used to detect Kα emission from aluminum heated by a fast electron beam. Results show that a temperature of about 40 eV is reached in solid density aluminum up to a depth of about 100 μm
    • …
    corecore