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Studying transport for fast ignition application
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Experiments are approaching huge currents required

e Igniting 200 g/cc DT to 10 keV
 Requires 40KJ -> 2e'7 e- @1 MeV
= 200 MA, 15 ps

*Energy conversion ~ 30% demonstrated
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* With laser energy up to 300 J

=10-20 MA, 1 ps in our targets

Compressed Core
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We use room temp metal to stand in for DT

plasma

* Cu-K_ fluorescence shows electron propagation
— A Bragg mirror images the fluorescence emission
— Observe propagation in slab and wire geometries
e Basic findings
—e spread is independent of energy
—Energy deposition is proportional to energy
—Propagation length is approx the same in all

—Largest deposited energy requires corrections
—Temperature reduces mirror efficiency
—Resistance is limiting current

—Indications of surface bottleneck?

e Have developed new diagnostics to show local
temperature, starting to give a handle on details
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We use K, imaging to see electron fransport in Al

Bragg
Crystal

(Quartz 211)

Cu Ko image

* With Cu-K, (8 keV) can see ~ 100 um into AI
 Use three geomeiries

— Buried layer: cross section of prop in Al/Cu/Al
— Alloy: Side view of prop thru Al:Cu
— Wire: transport confined to Cu wire
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Electron beam spread in Aluminum is independent of

energy (30J, 70J, and 300J)

RAL data
500 | 30J,70J, 300J,0.8 ps
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Note initial spread -- starting
spot size is ~ 5X laser spot size
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Spread well described by heuvristic Monte-Carlo model

Laser Electro.n
Intensity generahon
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E
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Al thickness (um)

 e- generation efficiency & energy from local intensity (Beg scaling)
e Random transverse momentum independent of location
= High energy e- are forward directed, low energy e- spread out
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Fluorescence « Laser energy and Cu fraction

Target thickness (um)
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Fluorescence gets more complicated for high pulse energy
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Propagation distance obtained from the

peak K, image brightness vs depth
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Side view of CuAl gives the same result -

spreading at eniry surface and ~ 70 um mfp
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And in Cu wires where the current can’t spread

%’ ¢ A Wire target
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Cross section is much
smaller, so total energy into
wire is ~ 2% of beam energy
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With increasing current we are getting into

complications

e Reached current densities that require more
sophisticated diagnostic
— Must account for temperature
— Resistance limitations become important

 Challenge is in understanding the laser-plasma
interface region
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Have added HOPG specirometers for better

understanding of temperature gradients
256 eV XUV image

e 0.5um Al/5 um Cu
target
e 500 um x 500 pum size

* 0.5 ps, 300J irradiation

Peak temp 2x general temp
-> strong heating from initial beam

3:1 front:back intensity ratio in He,
-> strong axial temp gradient
-> front surface ~ 2 keV
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Cu K shell spectrum

— Front view
— Rear view




Fluorescence collection efficiency decreases with

temperature

Bragg mirror collection
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Resistivity limits propagation at high current density
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Higher current would cause stronger limitations.
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Current into the wire was limited so fields aren’t too bad
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Summary

e Currents are still scaling with increasing intensity
* Propagation lengths are appropriate - ~ 100 um
e Reached current densities that require more
sophisticated diagnostic
— HOPG spectrometers for current and temperature
e Resitivity may be limiting wire current

 Chadllenge is in understanding the laser-plasma
interface region
— Created diagnostics and analyses to probe that area

— Adding packages to LSP for self-consistent electron creation in
plasma
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