258 research outputs found

    Far-infrared line spectra of active galaxies from the Herschel/PACS Spectrometer: the complete database

    Full text link
    We present a coherent database of spectroscopic observations of far-IR fine-structure lines from the Herschel/PACS archive for a sample of 170 local AGN, plus a comparison sample of 20 starburst galaxies and 43 dwarf galaxies. Published Spitzer/IRS and Herschel/SPIRE line fluxes are included to extend our database to the full 10-600 μm\mu m spectral range. The observations are compared to a set of CLOUDY photoionisation models to estimate the above physical quantities through different diagnostic diagrams. We confirm the presence of a stratification of gas density in the emission regions of the galaxies, which increases with the ionisation potential of the emission lines. The new [OIV]25.9μm\mu m/[OIII]88μm\mu m vs [NeIII]15.6μm\mu m/[NeII]12.8μm\mu m diagram is proposed as the best diagnostic to separate: i)i) AGN activity from any kind of star formation; and ii)ii) low-metallicity dwarf galaxies from starburst galaxies. Current stellar atmosphere models fail to reproduce the observed [OIV]25.9μm\mu m/[OIII]88μm\mu m ratios, which are much higher when compared to the predicted values. Finally, the ([NeIII]15.6μm\mu m + [NeII]12.8μm\mu m)/([SIV]10.5μm\mu m + [SIII]18.7μm\mu m) ratio is proposed as a promising metallicity tracer to be used in obscured objects, where optical lines fail to accurately measure the metallicity. The diagnostic power of mid- to far-infrared spectroscopy shown here for local galaxies will be of crucial importance to study galaxy evolution during the dust-obscured phase at the peak of the star formation and black-hole accretion activity (1<z<41 < z < 4). This study will be addressed by future deep spectroscopic surveys with present and forthcoming facilities such as JWST, ALMA, and SPICA.Comment: Accepted for publication in the ApJ

    Heating of the molecular gas in the massive outflow of the local ultraluminous-infrared and radio-loud galaxy 4C12.50

    Full text link
    We present a comparison of the molecular gas properties in the outflow vs. in the ambient medium of the local prototype radio-loud and ultraluminous-infrared galaxy 4C12.50 (IRAS13451+1232), using new data from the IRAM Plateau de Bure interferometer and 30m telescope, and the Herschel space telescope. Previous H_2 (0-0) S(1) and S(2) observations with the Spitzer space telescope had indicated that the warm (~400K) molecular gas in 4C12.50 is made up of a 1.4(+-0.2)x10^8 M_sun ambient reservoir and a 5.2(+-1.7)x10^7 M_sun outflow. The new CO(1-0) data cube indicates that the corresponding cold (25K) H_2 gas mass is 1.0(+-0.1)x10^10 M_sun for the ambient medium and <1.3x10^8 M_sun for the outflow, when using a CO-intensity-to-H_2-mass conversion factor alpha of 0.8 M_sun /(K km/s pc^2). The combined mass outflow rate is high, 230-800 M_sun/yr, but the amount of gas that could escape the galaxy is low. A potential inflow of gas from a 3.3(+-0.3)x10^8 M_sun tidal tail could moderate any mass loss. The mass ratio of warm-to-cold molecular gas is >= 30 times higher in the outflow than in the ambient medium, indicating that a non-negligible fraction of the accelerated gas is heated to temperatures at which star formation is inefficient. This conclusion is robust against the use of different alpha factor values, and/or different warm gas tracers (H_2 vs. H_2 plus CO): with the CO-probed gas mass being at least 40 times lower at 400K than at 25K, the total warm-to-cold mass ratio is always lower in the ambient gas than in the entrained gas. Heating of the molecular gas could facilitate the detection of new outflows in distant galaxies by enhancing their emission in intermediate rotational number CO lines.Comment: A&A, in pres

    Outflows of hot molecular gas in ultra-luminous infra-red galaxies mapped with VLT-SINFONI

    Full text link
    We present the detection and morphological characterization of hot molecular gas outflows in nearby ultra-luminous infrared galaxies, using the near-IR integral-field spectrograph SINFONI on the VLT. We detect outflows observed in the 2.12 micron H2_{2} 1-0 S(1) line for three out of four ULIRGs analyzed; IRAS 12112+0305, 14348-1447, and 22491-1808. The outflows are mapped on scales of 0.7-1.6 kpc, show typical outflow velocities of 300-500 km/s, and appear to originate from the nuclear region. The outflows comprise hot molecular gas masses of ~6-8x103^3 M(sun). Assuming a hot-to-cold molecular gas mass ratio of 6x105^{-5}, as found in nearby luminous IR galaxies, the total (hot+cold) molecular gas mass in these outflows is expected to be ~1x108^{8} M(sun). This translates into molecular mass outflow rates of ~30-85 M(sun)/yr, which is a factor of a few lower than the star formation rate in these ULIRGs. In addition, most of the outflowing molecular gas does not reach the escape velocity of these merger systems, which implies that the bulk of the outflowing molecular gas is re-distributed within the system and thus remains available for future star formation. The fastest H2_{2} outflow is seen in the Compton-thick AGN of IRAS 14348-1447, reaching a maximum outflow velocity of ~900 km/s. Another ULIRG, IRAS 17208-0014, shows asymmetric H2_{2} line profiles different from the outflows seen in the other three ULIRGs. We discuss several alternative explanations for its line asymmetries, including a very gentle galactic wind, internal gas dynamics, low-velocity gas outside the disk, or two superposed gas disks. We do not detect the hot molecular counterpart to the outflow previously detected in CO(2-1) in IRAS 17208-0014, but we note that our SINFONI data are not sensitive enough to detect this outflow if it has a small hot-to-cold molecular gas mass ratio of < 9x106^{-6}.Comment: Accepted for publication in A&A (11 pages, 10 figures

    Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    Full text link
    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78Mpc). We estimate typical BH masses of 3x10^7 M_sun using [NeIII]15.56micron and optical [OIII]5007A gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs the current SFR is taking place not only in the inner nuclear ~1.5kpc region, as estimated from the nuclear 11.3micron PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar AGN luminosities. However, the majority of the IR-bright galaxies in the RSA Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All this suggests that in local LIRGs there is a distinct IR-bright star forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.Comment: Accepted for publication in Ap

    On the far-infrared metallicity diagnostics: applications to high-redshift galaxies

    Full text link
    In an earlier paper we modeled the far-infrared emission from a star-forming galaxy using the photoionisation code CLOUDY and presented metallicity sensitive diagnostics based on far-infrared fine structure line ratios. Here, we focus on the applicability of the [OIII]88/[NII]122 microns line ratio as a gas phase metallicity indicator in high redshift submillimetre luminous galaxies. The [OIII]88/[NII]122 microns ratio is strongly dependent on the ionization parameter (which is related to the total number of ionizing photons) as well as the gas electron density. We demonstrate how the ratio of 88/$122 continuum flux measurements can provide a reasonable estimate of the ionization parameter while the availability of the [NII]205 microns line can constrain the electron density. Using the [OIII]88/[NII]122 microns line ratios from a sample of nearby normal and star-forming galaxies we measure their gas phase metallicities and find that their mass metallicity relation is consistent with the one derived using optical emission lines. Using new, previously unpublished, Herschel spectroscopic observations of key far-infrared fine structure lines of the z~3 galaxy HLSW-01 and additional published measurements of far-infrared fine structure lines of high-z submillimetre luminous galaxies we derive gas phase metallicities using their [OIII]88/[NII]122 microns line ratio. We find that the metallicities of these z~3 submm luminous galaxies are consistent with solar metallicities and that they appear to follow the mass-metallicity relation expected for z~3 systems.Comment: 10 pages, 7 figures, MNRAS in pres

    Avaliação do escurecimento de grãos de linhagens de feijoeiro-comum, no Estado de Mato Grosso.

    Get PDF
    O presente trabalho teve como objetivo avaliar linhagens de grão carioca com escurecimento lento de grãos no estado de Mato Grosso.CONAF

    Mid-J CO Emission in Nearby Seyfert Galaxies

    Full text link
    We study for the first time the complete sub-millimeter spectra (450 GHz to 1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup = 4 to 12) is the most prominent spectral feature in this range. These CO lines probe warm molecular gas that can be heated by ultraviolet photons, shocks, or X-rays originated in the active galactic nucleus or in young star-forming regions. In these proceedings we investigate the physical origin of the CO emission using the averaged CO spectral line energy distribution (SLED) of six Seyfert galaxies. We use a radiative transfer model assuming an isothermal homogeneous medium to estimate the molecular gas conditions. We also compare this CO SLED with the predictions of photon and X-ray dominated region (PDR and XDR) models.Comment: Proceedings of the Torus Workshop 2012 held at the University of Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A. Alonso-Herrero (eds.); 6 pages, 3 figure

    The CO-to-H2 conversion factor of molecular outflows. Rovibrational CO emission in NGC 3256-S resolved by JWST/NIRSpec

    Full text link
    We analyze JWST/NIRSpec observations of the CO rovibrational v=1-0 band at ~4.67um around the dust-embedded southern active galactic nucleus (AGN) of NGC3256 (d=40Mpc; L(IR)=10^11.6 Lsun). We classify the CO v=1-0 spectra into three categories based on the behavior of P- and R-branches of the band: (a) both branches in absorption toward the nucleus; (b) P-R asymmetry (P-branch in emission and R-branch in absorption) along the disk of the galaxy; and (c) both branches in emission in the outflow region above and below the disk. In this paper, we focus on the outflow. The CO v=1-0 emission can be explained by the vibrational excitation of CO in the molecular outflow by the bright mid-IR ~4.7um continuum from the AGN up to r~250pc. We model the ratios between the P(J+2) and R(J) transitions of the band to derive the physical properties (column density, kinetic temperature, and CO-to-H2 conversion factor, alpha_CO) of the outflowing gas. We find that the 12CO v=1-0 emission is optically thick for J<4, while the 13CO v=1-0 emission remains optically thin. From the P(2)/R(0) ratio, we identify a temperature gradient in the outflow from >40K in the central 100pc to <15K at 250pc sampling the cooling of the molecular gas in the outflow. We used three methods to derive alpha_CO in eight 100pc (0.5") apertures in the outflow by fitting the P(J+2)/R(J) ratios with non-LTE models. We obtain low alpha_CO x 3.2e-4/[CO/H2] factors between 0.34 and 0.62 Msun (K km/s/pc2)^-1. This implies that outflow rates and energetics might be overestimated if a ULIRG-like alpha_CO, which is 1.3-2.4 times larger, is assumed. We also report the first extragalactic detection of a broad (sigma=590km/s=0.0091um) spectral feature at 4.645um associated with aliphatic deuterium on polycyclic aromatic hydrocarbons (D_n-PAH).Comment: 17 pages, 12 figures. Submitted to A&
    corecore