31,586 research outputs found

    How hole defects modify vortex dynamics in ferromagnetic nanodisks

    Full text link
    Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.Comment: 9 pages, 4 page

    Non-Collinear Ferromagnetic Luttinger Liquids

    Full text link
    The presence of electron-electron interactions in one dimension profoundly changes the properties of a system. The separation of charge and spin degrees of freedom is just one example. We consider what happens when a system consisting of a ferromagnetic region of non-collinearity, i.e. a domain wall, is coupled to interacting electrons in one-dimension (more specifically a Luttinger liquid). The ferromagnetism breaks spin charge separation and the presence of the domain wall introduces a spin dependent scatterer into the problem. The absence of spin charge separation and the effects of the electron correlations results in very different behaviour for the excitations in the system and for spin-transfer-torque effects in this model.Comment: 6 pages, submitted to Journal of Physics: Conference Series for JEMS 201

    Correlation amplitude and entanglement entropy in random spin chains

    Get PDF
    Using strong-disorder renormalization group, numerical exact diagonalization, and quantum Monte Carlo methods, we revisit the random antiferromagnetic XXZ spin-1/2 chain focusing on the long-length and ground-state behavior of the average time-independent spin-spin correlation function C(l)=\upsilon l^{-\eta}. In addition to the well-known universal (disorder-independent) power-law exponent \eta=2, we find interesting universal features displayed by the prefactor \upsilon=\upsilon_o/3, if l is odd, and \upsilon=\upsilon_e/3, otherwise. Although \upsilon_o and \upsilon_e are nonuniversal (disorder dependent) and distinct in magnitude, the combination \upsilon_o + \upsilon_e = -1/4 is universal if C is computed along the symmetric (longitudinal) axis. The origin of the nonuniversalities of the prefactors is discussed in the renormalization-group framework where a solvable toy model is considered. Moreover, we relate the average correlation function with the average entanglement entropy, whose amplitude has been recently shown to be universal. The nonuniversalities of the prefactors are shown to contribute only to surface terms of the entropy. Finally, we discuss the experimental relevance of our results by computing the structure factor whose scaling properties, interestingly, depend on the correlation prefactors.Comment: v1: 16 pages, 15 figures; v2: 17 pages, improved discussions and statistics, references added, published versio

    Strategic entrepreneurship and dynamic flexibility: towards an integrative framework

    Get PDF
    Strategic entrepreneurship is a growing field within both Entrepreneurship and Management Science. Dynamic flexibility is a concept originally developed to resolve general business issues (Apter, 1985) and later enhanced to address specific strategic management challenges. Strategic Entrepreneurship deals with a singular strategic management response which is to achieve superior performance via simultaneous opportunity-seeking and advantage-seeking activities (Ireland, Hitt, & Simon, 2003). The process of maintaining superior performance is certainly a longitudinal one and requires capabilities on both those dimensions (Ireland & Webb, 2007). In this paper, we propose the use of dynamic flexibility as a useful capability to address strategic entrepreneurship longitudinal issue. By exploring the modulation time response model and different other references from both strategic management and strategic entrepreneurship literature, we aim to establish an integrative framework for dynamic strategic entrepreneurship.info:eu-repo/semantics/publishedVersio

    Enhanced Optical Dichroism of Graphene Nanoribbons

    Get PDF
    The optical conductivity of graphene nanoribbons is analytical and exactly derived. It is shown that the absence of translation invariance along the transverse direction allows considerable intra-band absorption in a narrow frequency window that varies with the ribbon width, and lies in the THz range domain for ribbons 10-100nm wide. In this spectral region the absorption anisotropy can be as high as two orders of magnitude, which renders the medium strongly dichroic, and allows for a very high degree of polarization (up to ~85) with just a single layer of graphene. The effect is resilient to level broadening of the ribbon spectrum potentially induced by disorder. Using a cavity for impedance enhancement, or a stack of few layer nanoribbons, these values can reach almost 100%. This opens a potential prospect of employing graphene ribbon structures as efficient polarizers in the far IR and THz frequencies.Comment: Revised version. 10 pages, 7 figure
    corecore