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Enhanced optical dichroism of graphene nanoribbons
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The optical conductivity of graphene nanoribbons is analytical and exactly derived. It is shown that the absence
of translational invariance along the transverse direction allows considerable intraband absorption in a narrow
frequency window that varies with the ribbon width, and lies in the THz range domain for ribbons 10–100 nm
wide. In this spectral region the absorption anisotropy can be as high as two orders of magnitude, which renders
the medium strongly dichroic, and allows for a very high degree of polarization (up to ∼85%) with just a single
layer of graphene. Using a cavity for impedance enhancement, or a stack of few layer nanoribbons, these values
can reach almost 100%. This opens a potential prospect of employing graphene ribbon structures as efficient
polarizers in the far IR and THz frequencies.
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I. INTRODUCTION

Dichroism refers to the ability of some materials to absorb
light differently, depending on the polarization state of the
incoming wave, and leads to effects such as the rotation
of the plane of polarization of light transmitted through
them.1 This characteristic is the basis of several elementary
optical elements like polarizers, wave retarders, etc., which
are essential building blocks in optics, photoelectronics and
telecommunications. Dichroism, as an intrinsic property of
certain materials and substances, is also widely relevant for
substance characterization in fields ranging from spectroscopy,
to chemistry, to life sciences.

A grid of parallely aligned metallic wires is a well known
textbook example of a dichroic system, where unpolarized
radiation becomes polarized perpendicularly to the wires, if
the wavelength is much larger than the wire separation.2 This
example shows how geometrical anisotropy can be engineered
to induce dichroism in otherwise isotropic media.

Here we unveil the intrinsic dichroic properties of graphene
nanoribbons (GNR), and assess how effectively grids of GNRs
can be used as polarizing elements. To our knowledge, the
intrinsic anisotropic absorption characteristics of GNR have
not been explored as we discuss here.

The motivation to explore GNRs in this context comes from
a convergence of several critical properties. First, the optical
absorption spectrum of pristine graphene is roughly constant
over an enormous band of frequencies,3,4 from the THz to the
near UV. This opens the unprecedented prospect of exploring
its optical response to develop optical elements that can operate
predictably and consistently in such broad frequency bands.
Broadband polarizers, for example, are a much needed element
in photonic circuits for telecommunications, and graphene can
play here an important role.5 Second, the optical absorption of
graphene is easily switched on and off by varying the electronic
density, which can be easily achieved by electrostatic gating.6

Third, due to the record breaking stiffness of the crystal lattice,
one can suspend a graphene sheet and cut a grating of the
thinnest nanowires (currently of the order of 10 nm7), which
opens new avenues in ultranarrow gratings, and upon which

we base the system depicted in Fig. 1. Fourth, since graphene
is metallic and possesses no bulk (it is a pure surface), the rich
phenomenology associated with surface plasmons-polaritons
(SPP) is certainly unavoidable, further broadening the horizon
of possibilities for optical applications.8 Finally, the atomic
thickness of graphene results in a transparency of 97.7%.
Hence, even if one is able to induce strong absorption along one
direction, the overall transmissivity will still be large, which
is important to maintain losses under control.

II. DICHROISM MECHANISM

The natural first step towards such possibilities consists in
analyzing the intrinsic optical response of GNRs, to which we
dedicate the remainder of this paper. We are interested in how
the finite transverse dimension affects the optical absorption
spectrum at low frequencies (IR and below), which is rather
featureless in bulk graphene3 (except for the ω = 0 Drude
peak), but turns out to be much richer in nanoribbons. The
situation we envisage is depicted in Fig. 1, and consists in
passing an electromagnetic wave across a grid of GNRs. For
definiteness and technical simplicity we restrict our analysis
to armchair (AC) nanoribbons, although our results do not
depend on the specific chirality, as will be clear later. An
important aspect to consider in GNRs has to do with how large
edge disorder is expected to be, and to what extent it might
mask the phenomena under discussion. To address this, while
at the same time keeping as much analytical control over the
results as possible, our calculations involve two steps. First, the
frequency-dependent conductivity tensor σαβ(ω), (α,β = x,y)
of an AC GNR is derived exactly for free electrons governed
by a nearest-neighbor tight-binding Hamiltonian (see below).
We then perform ensemble averages of such σαβ(ω), where
the ribbon width is the fluctuating parameter, and thus extract
the overall response of the system accounting for “disorder.”
This procedure hinges on the assumption that the leading
impact of disorder in the optical response is captured by
the broadening of the quasi 1D electronic bands, which is
also achieved with an ensemble average of ribbons with
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FIG. 1. (Color online) Illustration of the geometry under con-
sideration, and potential device application, consisting of a grid of
parallel GNRs perpendicular to the incoming wave. The grid can be
in vacuum, at the interface between two different dielectric media
(1,2), or even inside a metallic waveguide with sectional area a × b.
A plane-polarized incoming wave has its polarization rotated by an
angle θ upon crossing the nanoribbon grating or, alternatively, an
unpolarized wave emerges linearly polarized.

fluctuating width. As discussed below, other generic disorder
mechanisms (such as carrier density inhomogeneity or strain)
are supposed to produce only small (of the order of a few
percent) relative fluctuations of the observable properties
of the ribbons. Moreover, such ensemble averaging over a
distribution of ribbon’s widths is also close to the experimental
situation, insofar as even state-of-the-art fabrication cannot
control ribbon widths with atomic precision.9 Thus, an array
of ribbons cut out of a graphene sheet will always display
a distribution of widths around a predefined target value
〈W 〉 = W0. Technically, the conductivity of such an array of
GNRs is given by 〈σαβ(ω)〉 = ∑

W f (W )σW
αβ(ω), where f (W )

is the normal distribution for the ribbon width W , and σW
αα(ω)

is the conductivity of a single ribbon of width W .
Overall parametrizations are as follows. The natural energy

scale is the hopping amplitude in bulk graphene: t � 2.7 eV.10

The chemical potential μ determines the free carrier response
and also sets the spectral limit for interband transitions (at
T = 0 K). Nonzero free carrier densities are the norm, and
their amount depends on the fabrication and sample treatment
procedure. They can range from ne ∼ 1010 cm−2 to a few
1012 cm−2. Such densities correspond to μ varying roughly
between 0.01t to 0.1t , which is the interval we focus on
below. Gating allows the carrier density to be easily tuned via
field effect.11 Ribbons are interchangeably characterized by
their absolute width W , or by N , which counts the number of
dimer rows along the transverse direction, and W = √

3(N −
1)a/2 � 0.12 N nm, where a � 1.42 Å represents the C-C
distance. For the purposes of ensemble averaging, ribbon
widths are uniformly distributed with a standard deviation
that we take as constant: 〈N2 − 〈N〉2〉1/2 = 10 (�1.2 nm).
This is done to mimic the experimental limitations associated
with the minimum feature size that can be achieved by
lithographic means, and is presumably a constant number.
All the calculations discussed below have been done for
T = 300 K. We use the terms intra- or interband in reference
to transitions occurring among subbands with the same or
opposite sign of energy, respectively. The hopping amplitude
sets the energy scale, and all quantities with dimensions of
energy will be expressed in terms of t . For μ > 0.1t , and

N > 100 (18 nm), the finite width of the ribbon does not
significantly alter the relation between μ and ne from the one
in bulk graphene. Hence, ne � 7 × 1014(μ/t)2 cm−2. To be
definite, for illustration purposes we will take μ = 0.1t in most
of the plots.12 Conductivities are normalized to the universal
value σ0 = πe2/2h of clean 2D graphene at low frequencies,
and the incoming radiation has a wavelength much larger than
the ribbon width W .

III. DERIVATION OF THE CONDUCTIVITY TENSOR

The derivation of the conductivity tensor of an arm-
chair graphene ribbon starts with the consideration of the
nearest neighbor tight-binding Hamiltonian describing the
π bands of graphene, and characterized by a hopping
amplitude t � 2.7eV.10 The ribbon eigenstates have the
analytical form13,14 |�	,q,λ〉 = N

∑
n,m e−iq(m+n/2) sin(k	n) ×

(|A,n,m〉 + λe−iθ	,q |B,n,m〉), where k	 = π	/(N + 1) is the
quantum number associated with transverse quantization (	 =
1,2, . . . ,N), N = 1/

√
N + 1, λ = ±1 defines the valence

(λ = −1) or conduction (λ = +1) bands, |A,n,m〉 is the
Wannier state at sublattice A of the unit cell at position R =
n n + m m (see Fig. 1), N is the number of unit cells along
the finite n direction, and q is the dimensionless momentum
along m, whose value is within the range −π < q � π . The
phase difference between sublattice amplitudes is

θ	,q = arctan
2 cos k	 sin (q/2)

1 + 2 cos k	 cos (q/2)
. (1)

This is sufficient to determine the optical conductivity from
Kubo’s formula:15

σαβ = 2ie2

ωS

∑

	1,	2,q

∑

λ1,λ2

f (E	1,q,λ1 ) − f (E	2,q,λ2 )

h̄ω − (Ek2,q,λ2 + Ek1,q,λ1 ) + i0+

× 〈
�	1,q,λ1

∣∣ vα

∣∣�	2,q,λ2

〉 〈
�	2,q,λ2

∣∣ vβ

∣∣�	1,q,λ1

〉
, (2)

where S is the area of the ribbon, f (x) the Fermi distribution
function, and 〈�	,q,λ|vα|�	′,q,λ′ 〉 is the matrix element of the
α component of the velocity operator.16 Since the energy scale
is determined by t , let us introduce a dimensionless energy
parameter � = h̄ω/t .

Translation invariance along the longitudinal direction
dictates that the matrix elements of the velocity vx are diagonal
in q and 	, leading to σxx of the form

�σxx

σ0
= Nx

∑

	0

δfq0,	0M
2
x (q0,	0), (3)

where δfq0,	0 =f (E	0,q0,−) −f (E	0,q0,+), Nx =4/3
√

3(N−1),
and q0 is given by

q0 = 2 arccos
(�/2)2 − 1 − 4 cos2 k	0

4 cos k	0

. (4)

The sum in Eq. (3) is restricted to those values of 	0 such that
q0 ∈ R. Finally, M2

x (q0,	0) reads

M2
x (q0,	0) =

[
cos θ	0,q0−cos

(
θ	0,q0−q0/2

)
cos k	0

]2

sin(q0/2) cos k	0

. (5)

Only interband transitions (from the subbands with λ = −1 to
λ = +1) contribute to σxx .
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The analytical expression for σyy is slightly more cumber-
some than the previous one, due to the absence of translation
invariance along that direction. As a result, (i) the matrix
elements of the operator vy are nondiagonal in the subband
index 	, and (ii) there are both intraband (λ = λ′) and interband
(λ 
= λ′) contributions to the transverse conductivity. The
calculation is, nevertheless, straightforward, yielding

�σyy

σ0
= Ny

∑

	1,	2

∑

λ,λ′
P	1,	2 δf

λ,λ′
q0,	1,	2

M2
y (q0,	1,	2), (6)

where Ny = 4/
√

3(N+1)(N2−1), δf
λ,λ′
q0,	1,	2

= nF (E	1,q0,λ) −
nF (E	2,q0,λ′), and P	1,	2 = 1 − (−1)	1+	2 . This latter factor
entails the selection rule for transitions among subbands
	1 + 	2 = odd. The last factor is

M2
y (q0,	1,	2) = sin2 k	1 sin2 k	2

sin2
[(

k	1 + k	2

)/
2
]

sin2
[(

k	1 − k	2

)/
2
]

× ε	1,q0ε	2,q0 | sin(q0/2)|−1(h̄ω)−1

∣∣ cos k	1ε	2,q0 + λλ′ cos k	2ε	1,q0

∣∣
× Cq0,	1,	2 , (7)

where Cq0,	1,	2 = 1 + λλ′ cos(θ	1,q0 + θ	2,q0 − q0), and

q0 = 2 arccos
(a2 − a1)Qb + �2(b1 + b2) ± Qc

(b1 − b2)2
, (8)

with Qc = 2
√

�4b1b2 + �2QbQa , Qb = b1 − b2, Qa =
b1a2 − b2a1, ai = 1 + 4 cos2 k	i

, and bi = 4 cos k	i
. The sum

in Eq. (6) is also restricted to those 	1,	2 such that q0 ∈ R, and
to λ � λ′ (photon absorption only).

The expressions in Eqs. (3) and (6) are our central result, and
from them follow all the averages and other physical quantities
described and analyzed below.

IV. ANISOTROPIC OPTICAL ABSORPTION

Lateral confinement reduces the energy spectrum of GNRs
to a set of subbands, each reflecting the dispersion of an effec-
tive 1D mode 	 (	 = 1,2, . . . ,N ), propagating longitudinally
with momentum q: E	,q,λ = λt ε	,q , where λ = ±1, defines
the valence and conduction subbands,

ε	,q =
√

1 + 4 cos k	 cos(q/2) + 4 cos2 k	, (9)

and k	 is transverse quantized momentum: k	 = π	/(N + 1).
Consequently, the density of states is dominated by Van
Hove singularities (VHS) that develop at q = 0 for each
subband.13,17,18 Such sharp spectral features translate into
strong optical absorption for ideal GNRs, but are readily
smoothed out by edge or bulk disorder and/or temperature
in real systems.19 Our ensemble averaging has the same effect.

In Fig. 2 we show the averages 〈σxx〉 and 〈σyy〉 for
an ensemble with 〈N〉 = 150, and finite chemical potential:
μ = 0.1. This particular value of chemical potential was
chosen to allow a clear distinction between the interband and
intraband contributions to the conductivity, so as to better
illustrate the main features of the absorption spectrum. As
a consequence of time reversal symmetry, only the diagonal
components of σαβ in the coordinate system of Fig. 1 are
nonzero. Translation invariance along the longitudinal (x)
direction implies that only interband transitions contribute to

m

FIG. 2. (Color online) The three nonzero contributions for
〈σαα(ω)〉 discussed in the text, showing a very strong anisotropy
in the infrared. In this example the optical conductivities are
calculated for an ensemble of ribbons having 〈N〉 = 150 (�18.5 nm),√〈N 2 − 〈N〉2〉 = 10 (�1.2 nm). We further used T = 300 K and
μ = 0.1 (�0.3 eV). The interband contributions essentially follow
the bulk 2D behavior, with the expected temperature-broadened step
onset at h̄ω = 2μ. In contrast, the intraband contribution for the
transverse conductivity (σyy) is strongly peaked at low energies.
Also note that the vertical axis is truncated for clarity, and that σyy

peaks at nearly 28σ0 for this ensemble. The inset shows the same
three quantities, but for a single ribbon of N = 150, rather than the
ensemble.

σxx(ω), as derived explicitly above. Consequently, 〈σxx(ω)〉
reproduces the bulk 2D behavior, as is clearly seen in Fig. 2.
For the analysis of the transverse conductivity, 〈σyy(ω)〉, it is
convenient to isolate the inter- and intraband contributions:
〈σyy(ω)〉 = 〈σ inter

yy (ω)〉 + 〈σ intra
yy (ω)〉 (the latter is allowed since

along the transverse direction the electron scatters off the
ribbon edges). Whereas 〈σ inter

yy 〉 featurelessly follows 〈σxx〉
(and hence the bulk 2D behavior), its intraband counterpart
displays a rather strong feature at low energies which, for
this specific example, nearly reaches 30 times the universal
value σ0.

Some aspects of Fig. 2 are worth underlying. Firstly,
it is evident that, despite averaging to the same step-wise
ω-dependence, 〈σ inter

yy (ω)〉 is much smoother than 〈σ inter
xx (ω)〉,

even though the averages are over the same ensemble. This
can be traced to the fact that, for each individual ribbon,
only N symmetric transitions (−E → +E) contribute to
σ inter

xx (ω), whereas σ inter
yy (ω) includes O(N2) transitions among

almost all pairs of subbands. Consequently, the latter has
many more absorption singularities, but much weaker, by
conservation of spectral weight (this is explicitly shown in
the inset of Fig. 2). The averaging is thus more efficient in
washing out the structure of VHSs in 〈σ inter

yy (ω)〉. Secondly,
the low-energy peak in 〈σ intra

yy (ω)〉 can be already identified
from a single ribbon (inset). Its origin is simple to understand
with reference to Fig. 3. Since the band structure consists
of a set of discrete subbands, the chemical potential will
always be straddled by two of them at q = 0, such that
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(b)(a)

FIG. 3. (Color online) (a) Illustration of the transverse spectrum
quantization and highlight of the two most significant intraband
transitions δω1,2, which appear around the Dirac point (N = 21,
EF = 0.4t). (b) The projection of the subbands E	,q,+ shown in
(a), as a function of the 1D momentum q, and for l = 11, . . . ,18
(see text).

E	,q=0,λ < μ < E	+1,q=0,λ. Given that transitions 	 → 	 + 1
are allowed in σ intra

yy , one expects an absorption peak at h̄ω ≈
|E	,q,λ − E	+1,q,λ|. Moreover, as per Eq. (7) the matrix element
decays rapidly with the difference in band index, so that the
transitions between the two bands closest to μ completely
dominate σ intra

yy . From Fig. 3 it is clear that there are always
two pairs of such bands, whose energy difference at q = 0 is
h̄ δω1,2 ≈ π

√
3 − μ2 ± 2μ/(N + 1). Since we are interested

in situations where μ  1, the intraband peaks are solely
determined by the ribbon geometry: h̄ωmax ≈ π

√
3/(N + 1).

This can be confirmed in the inset of Fig. 5 for ensembles
with different 〈N〉, and introduces an element of predictability
and tunability with respect to the frequency band where the
optical absorption is highly enhanced. In other words, given
the frequency of operation desired for a given application, one
can select the appropriate average ribbon width that yields the
strongest optical anisotropy at that target frequency.

Another relevant detail to notice is that, as seen in Fig. 2,
the absorption peak in σ intra

yy is much more resilient to the
ensemble averaging (or level broadening) than all the other
transitions coming from interband processes: the averaging
readily washes out the VHS features, but leaves the peak
in 〈σ intra

yy 〉 quite well defined and intense. In the case shown
in Fig. 2, 〈σ intra

yy 〉 peaks at a few dozen times the value of
the longitudinal 〈σxx〉 The reason for this is very simple to
understand qualitatively, and is twofold. On the one hand,
since there are always two resonant conditions very close in
frequency (for example, δω1 and δω2 in Fig. 3), the shape of
the feature in σ intra

yy has a double peak structure. To show this
explicitly, in Fig. 4 we present a close-up of σ intra

yy for the single
ribbon with N = 150 previously shown in the inset of Fig. 2:
the double peak structure is self-evident. In addition to that,
the transition processes contributing to σ intra

yy are quite different
from the ones that contribute to σxx , or σ inter

yy . In a single
independent ribbon, the longitudinal conductivity is dominated
by interband transitions among subbands which have an
inverted dispersion with respect to each other [see Fig. 4(b)
for an illustration]. Consequently the resonant condition occurs
only at the van Hove point, leading to the very sharp van Hove
absorption peaks in σxx that we see in the inset of Fig. 2. In
contrast, the processes contributing the most to σ intra

yy involve
transitions among nearly parallel subbands [Fig. 4(b)], thus

(b)(a)

FIG. 4. (Color online) (a) A close-up of the most prominent
feature in σ intra

yy for the single ribbon whose absorption spectrum
was shown in the inset of Fig. 2. On this close-up the double peak
structure discussed in the text is clearly visible. (b) An illustration of
the different nature of the processes contributing to σ intra

yy and σ inter
xx .

In the former, the resonant transitions occur between quasi-parallel
subbands, whereas in the latter the resonant condition is only strictly
verified at the van Hove point.

allowing a finite density of momentum states to contribute to
the resonance, and implying a larger joint density of states.
This makes the absorption feature in σ intra

yy broader than the
van Hove-type peaks associated with σxx . The consequence of
this is that, when one considers the ensemble averaging, the
sharp van Hove peaks in the longitudinal conductivity will be
slightly displaced with the changing N within the ensemble,
and are rapidly washed out. The double-peak structure,
combined with the broader parallel-dominated absorption,
protects the transverse absorption peak with respect to the
level broadening, thereby resulting in an absorption feature
that is much more robust.

To assess the polarizing efficiency of a single graphene
ribbon we calculate the optical transmission amplitude, which
is the ratio of the electric field amplitudes of the incoming and
transmitted fields: tα(ω) = E(t)

α /E(i)
α , (α = x,y). For radiation

impinging normally upon an ensemble of GNRs separating
medium 1 and medium 2 (Fig. 1), the transmission amplitude
reads explicitly

tα(ω) = 2 Z(2)

Z(1) + Z(2)[1 + Z(1)〈σαα(ω)〉] , (10)

where Z = √
μ0μ/ε0ε is the impedance of each medium.

This result is obtained in the conventional way, by assuming
that the system of graphene ribbons is a metallic sheet of
zero thickness, and imposing the boundary conditions of the
electromagnetic field at the interface. Knowledge of tα(ω)
allows for the calculation of the degree of polarization [DP,
P(ω)], or the rotation of the plane of linear polarization
(θ = θf − θi):

P(ω) = |tx |2 − |ty |2
|tx |2 + |ty |2 , tan θf = ty(ω)

tx(ω)
tan θi, (11)

This definition is useful for unpolarized incoming light where
P = ±1 reflects full polarization of the incoming wave. For
an already polarized incoming wave, the second equation
shows that the effect naturally depends on the orientation of
the incoming polarization with respect to the ribbon principal
directions. With P(ω) we can immediately identify the degree
of dichroism by how close |P(ω)| is to unity (i.e., how close
to an ideal polarizer we are).
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FIG. 5. (Color online) The degree of polarization P(ω) in the
low energy region, for ribbons of different average width (in unit
cells) 〈N〉 and μ = 0.1, T = 300K (for reference, 〈N〉 = {75, 150,

375, 750, 1500} ⇔ 〈W 〉 = {9, 18, 46, 92, 184} nm). The inset
shows the position of the most prominent peak in 〈σ intra

yy 〉 as a function
of 〈N〉 and μ. The μ dependence is expectedly weak, while the peak
position is seen to follow the analytical form described in the text.

In Fig. 5 we plot P(ω) for different ribbon widths. It can be
clearly seen that DP in excess of 50% can be achieved already
with ribbons 45 nm wide. We underline that this is the degree
of polarization produced by an atomically thin ensemble of
ribbons, which makes the magnitude of the effect even more
striking! Even though the transparency of infinite 2D graphene
is as large as 97.7%, the confinement-induced anisotropy can
be so large as to almost completely suppressing one of the field
projections. The same figure also confirms that the optimum
DP is achieved at a width-dependent frequency ωmax which, as
discussed above, has a simple form (inset of Fig. 5). However
it is also clear that this tunability is at the expense of the
absolute amount of DP [narrower ribbons → larger ωmax →
smaller P(ωmax)]. Nevertheless, it has been experimentally
confirmed that the optical absorption of N -layer graphene is
simply proportional to N , from the bilayer to graphite20 for
most of the low energy range.3,21,22 This means that the effect
reported here can be significantly magnified by using few-layer
graphene ribbons, or simply superimposing a few independent
layers onto each other.

In addition, the form of Eq. (10) given in terms of the
impedance of the media suggests that additional parameter
freedom can be achieved if the wave propagates inside
a metallic waveguide. As is well known, electromagnetic
propagation in waveguides is restricted to normal TEM, TM,
or TE modes. Each of the latter two has a characteristic
dispersion that is different from the free-space relation ω =
ck/n. For the purpose of analyzing transmission and reflection
amplitudes in a situation as depicted in Fig. 1, the effect of the
waveguide can be absorbed in a renormalized and frequency-
dependent impedance Z(ω). For example, the mode TEmn has a
characteristic impedance23 Zmn(ω) = Zω/

√
ω2 − ω2

mn, where
ω2

mn = (c2π2/με)[(m/a)2 + (n/b)2]. Hence each mode can
only propagate if ω is beyond the mode cut-off frequency ωmn,
and this is frequently used to select/restrict the propagating

FIG. 6. (Color online) The effect of a metallic waveguide of
square cross section in the degree of polarization P(ω) for two
ensembles of ribbons (〈N〉 = 150, 750). Each panel shows P(ω)
for an incoming wave made of a combination24 of the two lowest
degenerate modes TE10,01, in vacuum (black) and in waveguides
(colors) with different geometries, i.e., different cutoff frequency ω10.
Each ω10 is marked by a dot at the corresponding w in the horizontal
axis and a unique color.

modes by adapting the geometry of the waveguide. In our
example we could take a square cross section (a = b), in
which case the two degenerate modes TE10 and TE01 can be
combined into an arbitrary incoming plane polarization.24 In
that case, if ω10 < ω < ω11, only the modes TE10,01 propagate
in the waveguide, and Z10(ω) = Zω/

√
ω2 − ω2

10 . The cavity
setup is interesting and useful for two reasons, which can
be understood by inspection of Fig. 6: (i) on one hand, by
tuning the cavity dimensions so that ω10 � ωmax(N ) one can
precisely cut off the DP below ω10, creating a well defined
band of frequencies where the system displays high DP;
(ii) on the other hand, since Z10(ω) > Z (and, in particular
Z10(ω � ω10) � Z), the cavity highly magnifies the DP, even
for a monolayer system. Taking as illustration the ribbon
ensemble with 〈N〉 = 750 shown in Fig. 6, proper tuning of
the cutoff frequency can introduce a clear and well defined
band filter for P(ω), while simultaneously amplifying the
magnitude of P(ω) in comparison with the value for a free
wave. [P(ω) climbs beyond 80% in the entire frequency
window]. Lastly, this enhancement of the impedance can also
makeP(ω) more steplike within the strongly amplified regime,
rather than peaklike, as implied by the right panel of Fig. 6.

V. DISCUSSION

The optical absorption of a ribbon is seen here to be highly
anisotropic on account of the new intraband channel made
possible by the finite transverse direction, and the resulting
electron scattering at the ribbon edges. Recent experiments
do show that the transmission spectrum of graphene ribbon
arrays is rather different for light polarized parallel and
perpendicularly to the ribbon length, with the latter dominated
by a plasmon absorption resonance at ∼3THz.8 However, these
experiments pertain to ribbons much wider (�1 μm) than the
ones envisaged here (�50 nm), such that their spectrum is
effectively continuous. Naturally, in the limit of wide ribbons
(N → ∞), the peak of σyy in Fig. 2 simultaneously narrows
and moves towards ω = 0, where it becomes the Drude
singularity that we expect for an infinite and disorder-free
system. Indeed, the easiest way to understand the sharp feature
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of σyy at low energies is to see it as a usual Drude peak that
has been shifted to finite ω by making the system finite along
the transverse direction, thus allowing intraband transitions of
finite frequency.

The issue of how to actually manufacture a grid of
narrow GNRs with consistent and predictable width has been
addressed earlier. It can be achieved by means of high precision
patterning using a He-ion beam microscope in lithography
mode,7 or more standard etch masks able to cut down to the
10nm scale.25 An alternative to cutting ribbons out of graphene
sheets is the recently developed technique of unzipping carbon
nanotubes (CNTs).26–28 Nowadays it is possible to produce
batches of CNTs with similar radius,29 and so this would
allow for the production of high quality ribbons without
edge disorder. Another alternative, that completely bypasses
patterning, consists in inducing effective nanoribbons by
engineering a periodic distribution of strain in a bulk graphene
sheet, such that the strain-induced confinement mimics the
ribbon quantization features.30

As always in the context of GNRs, the role of disorder needs
to be addressed, and perhaps electron-electron interactions as
well.15 It is known that disorder can affect and even destroy
many intrinsic features, such as the edge modes in zig-zag
(ZZ) GNRs17, the spontaneous spin polarization expected for
ideal ZZ ribbons,18,31 the width scaling of the gap,32,33 or
their conductance.34 In our case, disorder can modify the
intrinsic optical anisotropy in different ways, depending on the
causes: (i) inhomogeneities of the free carrier density caused
by various external effects (e.g., substrate inhomogeneities,
adsorbates, charged impurities); (ii) spatial fluctuations of the
site energy and hopping parameters leading to broadening of
mini-bands and carrier scattering, which in turn broadens and
shifts the intraband absorption peaks; (iii) adsorbates and other
impurities can introduce spurious features in the absorption
spectrum; (iv) edge disorder can lead to localization of some
electronic states.34 Concerning (i), typical electron density
fluctuations in graphene on representative substrates, such
as SiO2, have been evaluated experimentally,35 and seen to
be of the order of δne ∼ 4 × 1010 cm−2 in relatively clean
systems. Such effects will presumably have little impact
when the overall carrier density is between 1011 and 1012,
which are the densities targeted in our study. The effects
of diagonal and nondiagonal disorder (ii) are expected to
be less important for narrower ribbons, simply because
the anisotropy is induced by intra subband absorption, and
the separation of the subbands scales as ∝ 1/N (and so the
narrower the ribbon the less significant become local fluc-
tuations of the potential energy, or the hopping amplitudes).
Therefore, it is expected that the necessary anisotropy in σ (ω)
might be achieved in practice. Regarding (iii), post-patterning
annealing techniques have been progressively improved, and
proven quite efficient in removing such sources of disorder;36

alternatively, encapsulation of graphene has been shown
to significantly reduce environmental contamination and to
reduce electronic scattering.37 With respect to (iv), much
depends on the fabrication technique, and the CNT unzipping
method (or perhaps the strain-engineering route) would be
preferred to mitigate edge disorder. If present in a strong
degree, however, edge disorder might bring about new effects
not considered here. In particular, experiments show that edge

disorder arising from conventional lithographic procedures
leads to strong electron localization, and the emergence of
a system of effective coupled quantum dots, where charging
and interaction effects can be important.32,38 The extent to
which these features modify the absorption spectrum is not
known experimentally and, theoretically, a realistic approach
to the problem is out of range of a fully analytical approach,
as we seek and use here. These effects will be addressed in
future work.

Another issue to consider is the low frequency absorption
characteristic of any metal, associated with disorder-induced
intraband transitions, and accounted for by the Drude model.
In the case of graphene, the Drude conductivity is given by

σD

σ0
= 4 |μ|

π

1

h̄ (γ − iω)
(12)

where γ is the Drude scattering rate. For nanoribbons, such
a term would have to be added to σxx . The appearance of a
Drude peak at ω = 0 is not expected to drastically affect the
absorption peaks discussed so far, which occur at ω = ωmax

(finite). A similar conclusion was drawn in recent experiments
measuring optical absorption in nanoribbons much wider than
our target widths (and so quantization effects disappear there),
which show anisotropic absorption features dominated by
plasmon absorption, which are vastly insensitive to the Drude
component.8

At any rate, to be more quantitative, the typical Drude
scattering rate lies in the vicinity of 100 cm−1 (=0.005t).39

Thus, in view of the results of Fig. 5, the Drude regime
should only dominate for ribbons of average width above
184nm (〈N〉 � 1500). Such ribbons are too wide anyway for
the sort of dimensions we are primarily interested in, which
lie around 50 nm or below (〈N〉 � 375), and for which we
find DP in excess of 50% already. In addition, Fig. 2 shows
that the magnitude of the peak in the transverse conductivity
easily reaches 10–20 times the value σ0. For wider ribbons
than the one shown (184nm) the peak easily surpasses a factor
of 100, even after an ensemble average has been performed
(see, e.g., Fig. 7).

The Drude peak, on the other hand, has a magnitude given
by �[σD(ω = 0)/σ0] = 4|μ|/(h̄γ ) ≈ 800 |μ|/t . For μ = 0.1t

this means that �[σD(ω = 0)/σ0] ≈ 80. However, if we lower
the Fermi energy by a factor of 10 to μ = 0.01t , its magnitude
will be 10 times smaller, of course, but the change in the
transverse absorption peak is not so significant. An example
of this is shown in Fig. 7, where we show the effect of
decreasing μ (i.e., lowering the carrier density), both on
the degree of polarization, and on 〈σ intra

yy (ω)〉. At μ = 0.01t

(ne � 7 × 1010 cm−2) both the polarizability and the trans-
verse conductivity peak remain significant. In other words, one
can suppress the amplitude of the Drude peak at lower densities
while not suppressing much the anisotropy and polarizability.

As we pointed out already, by considering the response
of an ensemble of GNRs with fluctuating widths, we are
introducing considerable broadening effects already [compare,
for example, the peak in 〈σyy(ω)〉 for an ensemble in Fig. 2,
with the five times more intense peak of a single ribbon
(inset)]. For these reasons, we believe that the dichroism
of GNRs remains considerably enhanced in the presence of
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(b)(a)

FIG. 7. (Color online) (a) The degree of polarization P(ω) as a
function of Fermi energy. The behavior at low energies is shown for
two ensembles of ribbons of average width 〈N〉 = 750 (92 nm) and
〈N〉 = 375 (46 nm) and, for each, the Fermi energy is varied from
μ = 0.01t to μ = 0.1t . Lowering μ leads to the progressive decrease
in the magnitude of the degree of polarization. (b) The same analysis
but now for 〈σ intra

yy (ω)〉, and considering only the two extreme values
of μ. Notice how the vertical scale is truncated, and that the transverse
conductivity in the case 〈N〉 = 750 peaks at 120σ0 for μ = 0.1t , and
at 25σ0 for μ = 0.01t .

realistic moderate disorder. It is worth highlighting also the
fact that, since the dichroism stems here from purely spectral
considerations, the chirality of the GNRs should be immaterial.
In fact, all ribbons have the same scaling of the spectral features
with N , irrespective of their chirality, and so we expect the
dichroism to remain when the ensemble comprises GNRs of
arbitrary chirality.

Finally, having in mind the scheme depicted in Fig. 1
where we propose a grating of GNRs, we point out that the
dichroism discussed here so far is intrinsic to each element of
the grating, as it were. This is a departure from the conventional
situation where the grating is made from a normal (isotropic)
metal, and the polarizing effect arises from the geometry
only, not from some intrinsic anisotropy of the metallic
comb itself. In fact, it might have been noted that, whereas
a conventional metallic grating polarizes perpendicularly to
the slit direction, the dichroism of the individual GNRs
favors polarization along the ribbon direction. The actual
overall polarizing characteristics of a periodic grating based
on GNRs would have to be determined by the combination
of this intrinsic dichroism with the geometrical effect (just
as in a conventional grating), and for which the surface
plasmon-polariton (SPP) physics may play an important role.40

However, SPP excitations contribute to the optical absorption
only if: (i) the incoming wave’s frequency coincides with the
band where those excitations are allowed, and not damped;
(ii) the grating is strictly periodic; (iii) all elements of the
grating are metallically connected so as to maintain coherence
of the excitations across the system as a whole; (iv) the
incoming wave impinges the grating at oblique incidence.
Given that we consider only normal-incidence (which is
the one typically most straightforward and efficient from an
experimental/applications point of view), the last condition (iv)
is violated from the outset, and corrections to the DP arising
from SPP are not expected. Moreover, one crucial reason for
the existence frequency bands of strong SPP absorption (or
transmission) in 3D metallic gratings arises from the coupling
between those modes at the two opposing surfaces.40 Being

a strict 2D metallic system (in effect a metallic boundary
condition for the propagation of electromagnetic waves), SPP
cannot decay into the (nonexistent) bulk of graphene. This
points to the peculiarities of the SPP physics in this 2D
Dirac metal, which have been addressed in detail in Ref. 41.
In particular, this reference identifies the conditions for the
existence of SPP modes, concluding that they are only allowed
in a the range of frequencies close to the DC limit, where the
optical response is dominated by the Drude peak. Hence, with
respect to point (i) above, even if one considers the possibility
of oblique incidence, the conditions for excitation of SPP are
rather narrow, and not expected to play a role at the finite
frequencies where the DP effect of the ribbon system is most
effective (see more below). Points (ii) and (iii) strongly depend
on the fabrication process leading to the ribbons and/or their
integration in the final gratings, and are easily controllable.
The main message we wish to underline in this context is
then that, effects associated with increased absorption within
certain frequency bands arising from SPP are not expected
in the context of our proposed setup, and will not influence
the DP. But they could as well be explored by enforcing the
conditions enumerated above, and possibly allow even more
versatility and richness to the polarizing characteristics of
nanoribbon-based gratings. Such considerations are, however,
out of the scope of this report.

VI. CONCLUSIONS

Having derived the exact optical conductivity tensor of
GNRs, we studied the optical absorption response of ensem-
bles of ribbons with fluctuating width. One verifies that the
optical absorption can be made highly anisotropic within a
frequency band that is tunable via the ribbon average width,
and/or via the impedance characteristics of the embedding
medium. Physically, the origin of such strong anisotropy lies
in a resonant feature that is simultaneously very strong and
resilient to level broadening, in comparison with the conven-
tional van Hove-type absorption singularities, which quickly
wash out in the presence of width fluctuations and/or disorder.

Quantitative analysis reveals that an ensemble of monolayer
GNRs can show a very high degree of polarization, ∼85%.
This value can be enhanced by placing the ribbon in a cavity,
so that the real part of the impedance is increased in the appro-
priate region of the spectrum. In such situations the degree of
polarization can be close to 100%, which is quite remarkable
given the atomic thickness of the polarizing element.

The current analysis focuses on the intrinsic absorption
anisotropy of GNRs, where disorder effects are mimicked
by the fluctuating ribbon widths. We are currently exploring
routes to study the influence of more specific disorder models,
and combining the intrinsic absorption response of GNRs with
the geometric effects expected to arise in a GNR grating setup.
Likewise, the interplay of the anisotropy induced here by
space quantization and plasmons likely to be excited in such
finite-sized geometries should be addressed in the future.

Given the recent developments in precision patterning and
growth of narrow GNRs, and given the technological interest
in optical elements operating in the IR and THz bands, we trust
these results can motivate further theoretical and experimental
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investigation of GNRs and other graphene-derived structures
towards such applications.
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