62,380 research outputs found

    Charmonium production in Pb-Pb collisions with ALICE at the LHC

    Full text link
    We report on published charmonium measurements performed by ALICE, at the LHC, in Pb-Pb collisions at a center of mass energy per nucleon-nucleon collision sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV, at both mid (y<0.8|y|<0.8) and forward (2.5<y<42.5<y<4) rapidities. The nuclear modification factor of inclusive J/ψ{\rm J}/\psi is presented as a function of the collision centrality and the J/ψ{\rm J}/\psi transverse momentum, pTp_{\rm T}. The variation of the J/ψ{\rm J}/\psi mean transverse momentum square as a function of the collision centrality is also discussed. These measurements are compared to state of the art models that include one or several of the following mechanisms: color screening of the charm quarks, statistical hadronization at the QGP phase boundary, balance between J/ψ{\rm J}/\psi dissociation and regeneration in the QGP, J/ψ{\rm J}/\psi interaction with a dense comoving medium. Results on the production of the heavier and less bound ψ\psi' meson in Pb-Pb collisions at forward-rapidity are also presented and compared to both models and measurements performed by other experiments. At mid-rapidity we also report on ALICE unique capability to separate prompt and non-prompt J/ψ{\rm J}/\psi production down to low pTp_{\rm T} (1.5\geq 1.5 GeV/cc) and thus disentangle between effects on prompt J/ψ{\rm J}/\psi mesons and energy loss of bb quarks in the QGP.Comment: 4 pages, 7 figures, Quark Matter 2015, Kobe, Japa

    Partition function for a mass dimension one fermionic field and the dark matter halo of galaxies

    Full text link
    This work study the finite temperature effects of a mass dimension one fermionic field, sometimes called Elko field. The equilibrium partition function was calculated by means of the imaginary time formalism and the result obtained was the same for a Dirac fermion field, even though the Elko field does not satisfy a Dirac like equation. The high and low temperature limits were obtained, and for the last case the degeneracy pressure due to Pauli exclusion principle can be responsible for the dark matter halos around galaxies to be greater than or of the same order of the galaxy radius. Also, for a light particle of about 0.10.1eV and a density of just 0.1 particle per cubic centimeter, the value of the total dark matter mass due to Elko particles is of the same order of a typical galaxy. Such a result satisfactorily explains the dark matter as being formed just by Elko fermionic particles and also the existence of galactic halos that go beyond the observable limit.Comment: 7 pages, constant coefficient of Eq. 26 correcte

    CCDM model from quantum particle creation: constraints on dark matter mass

    Full text link
    In this work the results from the quantum process of matter creation have been used in order to constrain the mass of the dark matter particles in an accelerated Cold Dark Matter model (Creation Cold Dark Matter, CCDM). In order to take into account a back reaction effect due to the particle creation phenomenon, it has been assumed a small deviation ε\varepsilon for the scale factor in the matter dominated era of the form t23+εt^{\frac{2}{3}+\varepsilon}. Based on recent H(z)H(z) data, the best fit values for the mass of dark matter created particles and the ε\varepsilon parameter have been found as m=1.6×103m=1.6\times10^3 GeV, restricted to a 68.3\% c.l. interval of (1.5<m<6.3×1071.5<m<6.3\times10^7) GeV and ε=0.2500.096+0.15\varepsilon = -0.250^{+0.15}_{-0.096} at 68.3\% c.l. For these best fit values the model correctly recovers a transition from decelerated to accelerated expansion and admits a positive creation rate near the present era. Contrary to recent works in CCDM models where the creation rate was phenomenologically derived, here we have used a quantum mechanical result for the creation rate of real massive scalar particles, given a self consistent justification for the physical process. This method also indicates a possible solution to the so called "dark degeneracy", where one can not distinguish if it is the quantum vacuum contribution or quantum particle creation which accelerates the Universe expansion.Comment: 16 pages, 5 figures. Major modifications have been done, following the referee suggestions. The deduction of the treatment is now more transparent, figures have been added showing the statistical limits over the dark matter mass, and the best fit for DM mass has been slightly modifie

    From inflation to recent cosmic acceleration: The fermionic Elko field driving the evolution of the universe

    Full text link
    In this paper we construct the complete evolution of the universe driven by the mass dimension one dark spinor called Elko, starting with inflation, passing by the matter dominated era and finishing with the recent accelerated expansion. The dynamic of the fermionic Elko field with a symmetry breaking type potential can reproduce all phases of the universe in a natural and elegant way. The dynamical equations in general case and slow roll conditions in the limit HmplH\ll m_{pl} are also presented for the Elko system. Numerical analysis for the number of e-foldings during inflation, energy density after inflation and for present time and also the actual size of the universe are in good agreement with the standard model of cosmology. An interpretation of the inflationary phase as a result of Pauli exclusion principle is also possible if the Elko field is treated as an average value of its quantum analogue.Comment: 14 pages, 10 figures. Text revised and new abstract added. Accepted for publication in JCA

    Fusing Audio, Textual and Visual Features for Sentiment Analysis of News Videos

    Full text link
    This paper presents a novel approach to perform sentiment analysis of news videos, based on the fusion of audio, textual and visual clues extracted from their contents. The proposed approach aims at contributing to the semiodiscoursive study regarding the construction of the ethos (identity) of this media universe, which has become a central part of the modern-day lives of millions of people. To achieve this goal, we apply state-of-the-art computational methods for (1) automatic emotion recognition from facial expressions, (2) extraction of modulations in the participants' speeches and (3) sentiment analysis from the closed caption associated to the videos of interest. More specifically, we compute features, such as, visual intensities of recognized emotions, field sizes of participants, voicing probability, sound loudness, speech fundamental frequencies and the sentiment scores (polarities) from text sentences in the closed caption. Experimental results with a dataset containing 520 annotated news videos from three Brazilian and one American popular TV newscasts show that our approach achieves an accuracy of up to 84% in the sentiments (tension levels) classification task, thus demonstrating its high potential to be used by media analysts in several applications, especially, in the journalistic domain.Comment: 5 pages, 1 figure, International AAAI Conference on Web and Social Medi

    Gravity and the Quantum: Are they Reconcilable?

    Full text link
    General relativity and quantum mechanics are conflicting theories. The seeds of discord are the fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal in the sense that a particle does not follow one trajectory, but infinitely many trajectories, each one with a different probability. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction, while torsion in teleparallel gravity acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principles. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics.Comment: 15 pages, 2 figures. Talk presented at the conference "Quantum Theory: Reconsideration of Foundations-3", June 6-11, 2005, Vaxjo University, Vaxjo, Swede
    corecore