19 research outputs found

    Severe congenital microcephaly with AP4M1 mutation, a case report

    Get PDF
    Background: Autosomal recessive defects of either the B1, E1, M1 or S1 subunit of the Adaptor Protein complex-4 (AP4) are characterized by developmental delay, severe intellectual disability, spasticity, and occasionally mild to moderate microcephaly of essentially postnatal onset. Case presentation: We report on a patient with severe microcephaly of prenatal onset, and progressive spasticity, developmental delay, and severe intellectual deficiency. Exome sequencing showed a homozygous mutation in AP4M1, causing the replacement of an arginine by a stop codon at position 338 of the protein (p.Arg338X). The premature stop codon truncates the Mu homology domain of AP4M1, with predicted loss of function. Exome analysis also showed heterozygous variants in three genes, ATR, MCPH1 and BLM, which are known causes of autosomal recessive primary microcephaly. Conclusions: Our findings expand the AP4M1 phenotype to severe microcephaly of prenatal onset, and more generally suggest that the AP4 defect might share mechanisms of prenatal neuronal depletion with other genetic defects of brain development causing congenital, primary microcephaly

    In vivo imaging of calcium dynamics in zebrafish hepatocytes

    No full text
    Hepatocytes were the first cell-type for which oscillations of cytoplasmic calcium levels in response to hormones were described. Since then, investigation of calcium dynamics in liver explants and culture has greatly increased our understanding of calcium signaling. A bottleneck, however, exists in observing calcium dynamics in a non-invasive manner due to the optical inaccessibility of the mammalian liver. Here we take advantage of the transparency of the zebrafish larvae to develop a setup that allows in vivo imaging of calcium flux in zebrafish hepatocytes at cellular resolution. Using this, we provide quantitative assessment of intracellular calcium dynamics during multiple contexts, including growth, feeding, ethanol-induced stress and cell ablation. Specifically, we show that synchronized calcium oscillations are present in vivo, which are lost upon starvation. Feeding recommences calcium waves in the liver, but in a spatially restricted manner. Further, ethanol treatment as well as cell ablation induces calcium flux, but with different dynamics. The former causes asynchronous calcium oscillations, while the latter leads to a single calcium spike. Overall, we demonstrate the presence of oscillations, waves and spikes in vivo. Thus, our study introduces a platform for observing diverse calcium dynamics while maintaining the native environment of the liver, which will help investigations into the dissection of molecular mechanisms supporting the intra- and intercellular calcium signaling in the liver.info:eu-repo/semantics/publishe

    Phenotypes in siblings with homozygous mutations of TRAPPC9 and/or MCPH1 support a bifunctional model of MCPH1.

    No full text
    Autosomal recessive intellectual disability (ARID) is vastly heterogeneous. Truncating mutations of TRAPPC9 were reported in 8 ARID families. Autosomal recessive primary microcephaly (MCPH) represents another subgroup of ARID, itself very heterogeneous, where the size of the brain is very small since birth. MCPH1 plays a role at the centrosome via a BRCT1 domain, and in DNA Damage Repair (DDR) via BRCT2 and BRCT3, and it is not clear which of these two mechanisms causes MCPH in man.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    In vivo imaging of calcium dynamics in zebrafish hepatocytes.

    No full text
    Hepatocytes were the first cell type for which oscillations of cytoplasmic calcium levels in response to hormones were described. Since then, investigation of calcium dynamics in liver explants and culture has greatly increased our understanding of calcium signaling. A bottleneck, however, exists in observing calcium dynamics in a noninvasive manner because of the optical inaccessibility of the mammalian liver. Here, we aimed to take advantage of the transparency of the zebrafish larvae to image hepatocyte calcium dynamics in vivo at cellular resolution.info:eu-repo/semantics/publishe

    TrkA mediates effect of novel KIDINS220 mutation in human brain ventriculomegaly.

    No full text
    Congenital hydrocephalus is a potentially devastating, highly heterogeneous condition whose genetic subset remains incompletely known. We here report a consanguineous family where three fetuses presented with brain ventriculomegaly and limb contractures, and shared a very rare homozygous variant of KIDINS220, consisting of an in-frame deletion of three amino acids adjacent to the fourth transmembrane domain. Fetal brain imaging and autopsy showed major ventriculomegaly, reduced brain mass, and with no histomorphologic abnormalities. We demonstrate that binding of KIDINS220 to TrkA is diminished by the deletion mutation. This family is the second that associates a KIDINS220 genetic variant with human ventriculomegaly and limb contractures, validating causality of the gene and indicating TrkA as a likely mediator of the phenotype.info:eu-repo/semantics/publishe
    corecore