9 research outputs found

    Cytotoxic Acetogenins from the Roots of Annona purpurea

    Get PDF
    Annona purpurea, known in Mexico as "cabeza de negro" or "ilama", belongs to the Annonaceae family. Its roots are employed in folk medicine in several regions of Mexico. Taking that information into account, a chemical and biological analysis of the components present in the roots of this species was proposed. Our results demonstrated that the dichloromethane (DCM) extract was exclusively constituted by a mixture of five new acetogenins named annopurpuricins A-E (1-5). These compounds have an aliphatic chain of 37 carbons with a terminal \u3b1,\u3b2 unsaturated \u3b3-lactone. Compounds 1 and 2 belong to the adjacent bis-THF (tetrahydrofuran) \u3b1-monohydroxylated type, while compounds 3 and 4 belong to the adjacent bis-THF \u3b1,\u3b1'-dihydroxylated type; only compound 5 possesses a bis-epoxide system. Complete structure analysis was carried out by spectroscopy and chemical methods. All compounds were evaluated for their antiproliferative activity on three human tumor cell lines (MSTO-211H, HeLa and HepG2). Compounds 1-4 inhibited significantly the growth of HeLa and HepG2 cells, showing GI50 values in the low/subnanomolar range, while 5 was completely ineffective under the tested conditions. The investigation of the mechanism of action responsible for cytotoxicity revealed for the most interesting compound 1 the ability to block the complex I activity on isolated rat liver mitochondria (RLM)

    3-(Piperidin-1-ium-1-yl)-6-azoniaspiro[5.5]undecane dibromide monohydrate

    Get PDF
    The title compound, C15H30N22+·2Br−·H2O, was synthesized by reaction of 4-piperidinopiperidine with dibromopentane. The dication is built up from three linked piperidine rings, two of which have one quaternary N atom in common (azoniaspiro), whereas the third is N—C bonded to the azoniaspiro system and protonated on the N atom (piperidinium). All three piperidine rings adopt chair conformations. The crystal structure features O—H...Br and N—H...Br hydrogen bonds

    Mechanochemical Synthesis and Crystal Structure of the Lidocaine-Phloroglucinol Hydrate 1:1:1 Complex

    No full text
    Molecular complexation is a strategy used to modify the physicochemical or biopharmaceutical properties of an active pharmaceutical ingredient. Solvent assisted grinding is a common method used to obtain solid complexes in the form of cocrystals. Lidocaine is a drug used as an anesthetic and for the treatment of chronic pain, which bears in its chemical structure an amide functional group able to form hydrogen bonds. Polyphenols are used as cocrystal coformers due to their ability to form O–H···X (X = O, N) hydrogen bond interactions. The objective of this study was to exploit the ability of phloroglucinol to form molecular complexes with lidocaine by liquid assisted grinding. The formation of the complex was confirmed by the shift of the O–H and C=O stretching bands in the IR spectra of the polycrystalline ground powders, suggesting the formation of O–H···O=C hydrogen bonds. Hydration of the complexes also was confirmed by IR spectroscopy and by powder X-ray diffraction. The molecular structure was determined by single crystal X-ray diffraction
    corecore