11 research outputs found

    Electrostatically tunable optomechanical "zipper" cavity laser

    Get PDF
    A tunable nanoscale "zipper" laser cavity, formed from two doubly clamped photonic crystal nanobeams, is demonstrated. Pulsed, room temperature, optically pumped lasing action at a wavelength of 1.3 micron is observed for cavities formed in a thin membrane containing InAsP/GaInAsP quantum-wells. Metal electrodes are deposited on the ends of the nanobeams to allow for micro-electro-mechanical actuation. Electrostatic tuning and modulation of the laser wavelength is demonstrated at a rate of 0.25nm/V^2 and a frequency as high as 6.7MHz, respectively.Comment: 4 pages, 4 figure

    Proof-of-principle of surface detection with air-guided quantum cascade lasers

    Get PDF
    We report a proof-of-principle of surface detection with air-guided quantum cascade lasers. Laser ridges were designed to exhibit an evanescent electromagnetic field on their top surface that can interact with material or liquids deposited on the device. We employ photoresist and common solvents to provide a demonstration of the sensor setup. We observed spectral as well as threshold currents changes as a function of the deposited material absorption curve. A simple model, supplemented by 2D numerical finite element method simulations, allows one to explain and correctly predict the experimental results

    Quantum dot photonic crystal detectors

    Get PDF
    In this paper we report the use of a photonic crystal resonant cavity to increase the quantum efficiency, detectivity (D*) and the background limited infrared photodetector (BLIP) temperature of a quantum dot detector. The photonic crystal is incorporated in InAs/InGaAs/GaAs dots-in-well (DWELL) detector using Electron beam lithography. From calibrated blackbody measurements, the conversion efficiency of the detector with the photonic crystal (DWELL-PC) is found to be 58.5% at -2.5 V while the control DWELL detectors have quantum efficiency of 7.6% at the same bias. We observed no significant reduction in the dark current of the photonic crystal devices compared to the normal structure. The generation-recombination limited D* at 77K with a 300K F1.7 background, is estimated to be 6 x 10^(10) cm Hz^(1/2)/W at -3V bias for the DWELL-PC which is a factor of 20 higher than that of the control sample. We also observed a 20% increase in the BLIP temperature for the DWELL-PCs

    Towards on-chip tunable nanolasers based on optomechanical zipper cavities

    Get PDF
    Work towards semiconductor nanolasers at λ = 1.3 μm in optomechanically coupled one dimensional photonic-crystal cavities is presented. Optical mode spectroscopy and on-chip tuning capability based on capacitive actuation is developed. Experimental and theoretical results are presented

    Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability

    Get PDF
    The design of highly wavelength tunable semiconductor laser structures is presented. The system is based on a one dimensional photonic crystal cavity consisting of two patterned, doubly-clamped nanobeams, otherwise known as a "zipper" cavity. Zipper cavities are highly dispersive with respect to the gap between nanobeams in which extremely strong radiation pressure forces exist. Schemes for controlling the zipper cavity wavelength both optically and electrically are presented. Tuning ranges as high as 75nm are achieved for a nominal design wavelength of 1.3micron. Sensitivity of the mechanically compliant laser structure to thermal noise is considered, and it is found that dynamic back-action of radiation pressure in the form of an optical or electrical spring can be used to stabilize the laser frequency. Fabrication of zipper cavity laser structures in GaAs material with embedded self-assembled InAs quantum dots is presented, along with measurements of photoluminescence spectroscopy of the zipper cavity modes.Comment: 20 pages, 8 figure

    Quantum Cascade Microdisk Lasers for Mid Infrared Intra-Cavity Sensing

    Get PDF
    The design, fabrication, and testing of surface sensitive quantum cascade microdisk lasers in the mid-infrared for intra-cavity spectroscopy and integration with microfluidic delivery is presented

    Quantum dot photonic crystal detectors

    Get PDF
    In this paper we report the use of a photonic crystal resonant cavity to increase the quantum efficiency, detectivity (D*) and the background limited infrared photodetector (BLIP) temperature of a quantum dot detector. The photonic crystal is incorporated in InAs/InGaAs/GaAs dots-in-well (DWELL) detector using Electron beam lithography. From calibrated blackbody measurements, the conversion efficiency of the detector with the photonic crystal (DWELL-PC) is found to be 58.5% at -2.5 V while the control DWELL detectors have quantum efficiency of 7.6% at the same bias. We observed no significant reduction in the dark current of the photonic crystal devices compared to the normal structure. The generation-recombination limited D* at 77K with a 300K F1.7 background, is estimated to be 6 x 10^(10) cm Hz^(1/2)/W at -3V bias for the DWELL-PC which is a factor of 20 higher than that of the control sample. We also observed a 20% increase in the BLIP temperature for the DWELL-PCs

    Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces

    Get PDF
    We demonstrate a new type of optomechanical system employing a movable, micron-scale waveguide evanescently-coupled to a high-Q optical microresonator. Micron-scale displacements of the waveguide are observed for milliwatt(mW)-level optical input powers. Measurement of the spatial variation of the force on the waveguide indicates that it arises from a cavity-enhanced optical dipole force due to the stored optical field of the resonator. This force is used to realize an all-optical tunable filter operating with sub-mW control power. A theoretical model of the system shows the maximum achievable force to be independent of the intrinsic Q of the optical resonator and to scale inversely with the cavity mode volume, suggesting that such forces may become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at (http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm
    corecore