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Abstract 

 
 
In this paper we report the use of a photonic crystal resonant cavity to increase the quantum efficiency, 

detectivity (D*) and the background limited infrared photodetector (BLIP) temperature of a quantum dot detector. The 
photonic crystal is incorporated in InAs/InGaAs/GaAs dots-in-well (DWELL) detector using Electron beam 
lithography. From calibrated blackbody measurements, the conversion efficiency of the detector with the photonic 
crystal (DWELL-PC) is found to be 58.5% at –2.5 V while the control DWELL detectors have quantum efficiency of 
7.6% at the same bias. We observed no significant reduction in the dark current of the photonic crystal devices 
compared to the normal structure. The generation-recombination limited D* at 77K with a 300K F1.7 background, is 
estimated to be 6 x 1010 cmHz1/2/W at -3V bias for the DWELL-PC which is a factor of 20 higher than that of the 
control sample. We also observed a 20% increase in the BLIP temperature for the DWELL-PCs.  

 

Keywords:  Photonic crystal, Resonant Cavity, Quantum dots, Infrared sensors, Detectors, Focal plane arrays, 
Conversion Efficiency, Detectivity, Dark current. 
 
 
 

INTRODUCTION 

Quantum dot infrared photo detectors (QDIP) have been explored extensively in the past few years due to their 
potential to provide low dark current1-6, normal incidence operation1,2 and high operating temperatures6,7. The three 
dimensional confinement of electrons in a quantum dot reduces the thermionic emission4,8, thus resulting in low dark 
current and the high energy relaxation time3 due to the phonon bottleneck enables high temperature operation. Recently 
long wave infrared focal plane arrays based on self-assembled QDs have also been fabricated9.  However, QD detectors 
suffer from low responsivity leading to lower quantum efficiency as compared to Quantum well infrared detectors. Also 
the tuning of operating wavelength in a QDIP requires a change in the growth process with different specifications, 
which is not commercially viable. To compensate for this disadvantage of different self assembly growth for different 
detectors, Dots-in-well (DWELL) structure has been proposed1,4,8,9,10,11. This DWELL structure has facilitated the tuning 
of operating wavelength by changing the quantum well thickness and reduced the dark current further. Efforts have been 
made to increase the quantum efficiency by using Diffracted Bragg’s Reflector (DBR) in the DWELL structure. This 
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creates a resonant cavity leading to photon entrapment in the active region resulting in good quantum efficiency. 
However this results in a very thick structure making it impractical for commercial applications. In this paper we report 
the use of a photonic crystal resonant cavity in the DWELL region to increase the responsivity while maintaining all the 
other merits of the QDIPs. 

The idea behind the photonic crystal is the formation of a photonic bandgap by a spatial three-dimensional 
periodic variation of the refractive index12-16. The photonic crystal is realized by a hexagonal pattern of air holes in the 
active region as shown in figure2. The lattice parameter, which is the spacing between the air holes, is varied from 
2.2µm to 2.4µm in steps of 0.05µm. The three dimensional confinement of light, is attained by introducing localized 
defects by changing the radius of the air holes, perturbing the periodicity locally. The defect mode in a photonic crystal 
will serve as an effective resonant cavity, since it would trap light in a very narrow frequency band and would hardly 
suffer any losses12,15,16. In this paper we discuss the modeling of the photonic crystal pattern followed by the 
characterization. A comparison of performance between the photonic crystal detector and a normal DWELL detector 
with the same structure is presented. 

 

EXPERIMENT 

 
InAs/InGaAs/GaAs dots-in-well (DWELL) detectors were grown by molecular beam epitaxy on semi-

insulating GaAs substrates. The active region consists of 15 stacks of 2.4 monolayers (ML) of n-doped InAs quantum 
dots placed in an In0.15Ga0.85As/GaAs quantum well1,9 as shown in the figure1. The dots were doped n-type with a silicon 
concentration of 3 x 1010 /cm2 at a growth rate of 0.053 ML/s, which is equivalent to one electron per dot. The GaAs 
layers on either side of the active region, grown at 5800C, have a doping concentration of 2 x 1018 /cm3 and they serve as 
contact layers. The structure was then processed into 400µm square mesas with active region apertures ranging from 
25µm to 300µm in a class-100 clean room using photolithography, metallization, etching and annealing techniques. The 
top and bottom contacts were annealed at 4000C with Ge/Au/Ni/Au alloy as the contact metal. 

The band structure of the photonic crystal cavity was modeled using plane wave expansion methods and the 
effective index of the fundamental TE and TM modes of the unpatterned quantum dot heterostructure found using 
Finite-difference techniques. From the band structure analysis certain high symmetry points in the Brillouin zone are 
targeted to lower the conduction band mode frequency or to raise the valence band edge mode frequency using the two 
geometrical parameters lattice spacing ‘a’ and the hole radius ‘r’. Localized defects are introduced in the photonic 
crystal pattern by perturbing the radius of the air holes at some locations in the waveguide and the defect mode 
frequency is estimated to be around 0.3 from finite difference time domain simulations. This confines the lattice 
parameter ‘a’ to be around 2.4µm for a wavelength of 8.1µm. 

The photonic crystal cavity, with a hexagonal pattern of air holes, was defined using electron-beam 
lithography. The layout of the finished devices is shown in figure2 and figure3 shows the close-up view of the air holes 
in the active region. The wafer was diced and measurements were carried out on single pixel devices. 

 
 

RESULTS 

Spectral response measurements were done at 30K for the photonic crystal detectors and the control sample 
using Nicolet FTIR spectrometer. The spectral plots at a voltage bias of -3V are shown in figure4. It can be observed 
from the data that the peak at 5µm is suppressed in the photonic crystal detectors as compared to the control sample. 
The photonic crystal sensors showed a strong peak at around 8µm and suppressed the other prominent peaks. This is 
evident from the fact that the photonic crystal resonant cavity traps light in a very narrow frequency band around the 
localized defect frequency, which leads to more absorption at that particular wavelength resulting in a dominant peak at 
the corresponding position in the spectrum. This result was corroborated from the laser experiment results where in a 
tunable laser source radiation instead of a blackbody is excited on the detectors to measure the spectral response. 
 The responsivity of these sensors, which is the amount of current produced per unit watt of incident power, is 
measured at 77K by means of calibrated radiometry measurements using an 800K blackbody and optical chopper setup 
and the spectral response data. The conversion efficiency of the detector which is the product of the quantum efficiency 
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and the photoconductive gain is calculated from the responsivity and the peak wavelength by means of the following 
expression where R is the responsivity, η the conversion efficiency and λ being the peak wavelength. 

η = (Rhc)/ (qλ)  
Figure5 shows the conversion efficiency plot for the photonic crystal sensors and the control sample. The conversion 
efficiency of the photonic crystal detectors is increased by about a factor of 10 as compared to the normal detector due 
to the influence of the resonant cavity.  

Photo current and dark current measurements were made at different temperatures ranging from 30K to 300K 
in a bias range of -3V to 3V using an I-V curve analyzer. We observed the dark current increases with increase in 
temperature as expected due to more thermionic emission. The dark and photo current densities at 90K are shown in the 
figure 6 for both the devices. The dark current in the photonic crystal devices was found to be lesser than the normal 
DWELL detector. This could be interpreted as due to loss of material in the active region, which was removed to make 
the hexagonal pattern of air holes. The Background limited infrared photodetector (BLIP) temperature of the detectors is 
calculated by finding the temperature at which the photocurrent equals the dark current. From the plots the BLIP 
temperature of the photonic crystal devices is obtained to be around 110K, an increase by about 30K compared to the 
control detector, which shows that the photonic crystal detectors can work at higher temperatures than the normal 
DWELL detectors. Figure8 shows the Generation recombination noise limited detectivity (D*) for both the photonic 
crystal and the normal DWELL detectors. The detectivity which is a measure of signal to noise ratio was found to be 
around 20 times higher for the photonic crystals sensors than the normal sample. A D* of 6 x 1010 cmHz1/2/W at -3V 
bias has been reported for the photonic crystal detector when facing a 300K F1.7 background. 

 

CONCLUSIONS AND FUTURE WORK 

The use of photonic crystal structure in a DWELL detector increased its conversion efficiency by 
approximately 10 times. We comment only on conversion efficiency because of the non-unity photoconductive gain for 
the sample. Latest experiments predict that the gain lies in between 3-5. The increase in conversion efficiency takes care 
of the low quantum efficiency of DWELL detectors. The creation of photonic crystal cavity in a DWELL detector is 
easily done by electron beam lithography. This makes them easy to grow as compared to the Diffracted Bragg’s 
Reflector making them more suitable for commercial applications. The increase in BLIP temperature clearly indicates 
that these devices can function at higher temperatures compared to the DWELL detectors. Increase in detectivity also 
points out an increase in signal with low dark current (noise). Therefore use of photonic crystals has not affected the 
advantage of low dark current in DWELL detectors. With these merits the Photonic Crystal Quantum Dot Infrared 
Photo Detector is an exciting prospect for future research.  

The experimental results varied over samples with different aperture and radius to lattice parameter(r/a) ratio. 
The 50µm devices showed better performance as compared to the other 150µm photonic crystal devices. Thus 
optimization of the samples might be the next step in research. The experimental results mentioned in this paper might 
prove to be the start based on which further research may continue which makes these devices commercially viable.  

The authors would like to acknowledge support from NSF ECS Grants 0428756/ 0401154/0434102. 
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FIGURES 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Schematic of the DWELL detector, in which the photonic crystal cavity was inscribed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Layout of finished Devices 
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FIG. 3. Photonic Crystal Cavity 50um device (left), 150um device (right) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4.  Spectral Response of the normal and photonic crystal devices at -3V 
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Fig.5. Comparision of the Conversion Efficiencies of the samples 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. Dark and Photo current densities of the Control Sample and the Photonic crystal sensor 
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FIG. 7. Comparision of the Detectivity (D*) of normal and photonic crystal detectors 
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