15 research outputs found

    Thermodynamics of tin clusters

    Get PDF
    We report the results of detailed thermodynamic investigations of the Sn20_{20} cluster using density-functional molecular dynamics. These simulations have been performed over a temperature range of 150 to 3000 K, with a total simulation time of order 1 ns. The prolate ground state and low-lying isomers consist of two tricapped trigonal prism (TTP) units stacked end to end. The ionic specific heat, calculated via a multihistogram fit, shows a small peak around 500 K and a shoulder around 850 K. The main peak occurs around 1200 K, about 700 K higher than the bulk melting temperature, but significantly lower than that for Sn10_{10}. The main peak is accompanied by a sharp change in the prolate shape of the cluster due to the fusion of the two TTP units to form a compact, near spherical structure with a diffusive liquidlike ionic motion. The small peak at 500 K is associated with rearrangement processes within the TTP units, while the shoulder at 850 K corresponds to distortion of at least one TTP unit, preserving the overall prolate shape of the cluster. At all temperatures observed, the bonding remains covalent.Comment: Latex File and EPS Figures. 18 pages,11 Figures. Submitted to Phys. Rev.
    corecore