370 research outputs found

    The lecture video recording in university: A case study

    Get PDF
    The latest European statistics show that Italy has the second lowest percentage of university graduates because of different reasons such as the outdated teaching methodologies or the high costs of university tuitions. Hence, Italian universities have launched several projects to improve or innovate the pedagogical strategies, to raise the student recruitment and to increase access to education. In this work, we describe a pilot study about the use of the video recording of the traditional lessons in order to create specific university MOOCs. In particular, the degree course in Computer Science of University of Naples Federico II is involved in this project. The use of the lecture video recording reduces the MOOC costs and facilitates the contents management. In fact, the production of these MOOCs does not require professional operators so it is possible to involve students of university part-time job or Civil Service volunteers. The results show a good satisfaction by students and prove as these MOOCs can support the university teaching

    Doped carrier formulation of the t-J model: the projection constraint and the effective Kondo-Heisenberg lattice representation

    Full text link
    We show that the recently proposed doped carrier Hamiltonian formulation of the t-J model should be complemented with the constraint that projects out the unphysical states. With this new important ingredient, the previously used and seemingly different spin-fermion representations of the t-J model are shown to be gauge related to each other. This new constraint can be treated in a controlled way close to half-filling suggesting that the doped carrier representation provides an appropriate theoretical framework to address the t-J model in this region. This constraint also suggests that the t-J model can be mapped onto a Kondo-Heisenberg lattice model. Such a mapping highlights important physical similarities between the quasi two-dimensional heavy fermions and the high-Tc_c superconductors. Finally we discuss the physical implications of our model representation relating in particular the small versus large Fermi surface crossover to the closure of the lattice spin gap.Comment: corrected and enlarged versio

    Computing the absorption and emission spectra of 5-methylcytidine in different solvents: a test-case for different solvation models

    Get PDF
    International audience; The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical−physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models
    corecore