20 research outputs found

    Molecular adaptations to advanced fungus farming in leaf-cutting ant symbiosis

    Get PDF
    This paper addresses several aspects of legal regulation concerning cosmetics, homeopathy products and medical devices. The Portuguese legal framework, based mainly upon European directives, is analyzed concerning the administrative legal environment of the production, distribution and marketing of these products. It is stressed that legislation aims to achieve a balance between the values of free trade and enterprise, on one side, and the protection of public health protection, on the other side.1. Cosméticos – Regime jurídico dos cosméticos (Decreto-Lei n.º 296/98, de 25 de Setembro; Decreto-Lei n.º 100/2001, de 28 de Março; Decreto-Lei n.º 206/99, de 9 de Junho). 1.1. Noção funcional de produtos cosméticos e de higiene corporal, ilustrada mediante uma lista (indicativa) de exemplos por categorias de produtos cosméticos e de higiene corporal. 1.2. Desnecessidade de obtenção de autorização administrativa prévia, mas dever de notificação ao INFARMED. 1.3. Requisitos de qualidade e regras de composição e de experimentação (Decreto-Lei n.º 100/2001, de 28 de Março, alterado pelo Decreto-Lei n.º 151/2003, de 11 de Julho). 1.4. Obrigação de assistência por um técnico responsável. 1.5. Rotulagem. 1.6. Requisitos da actividade industrial. 1.7. A protecção da confidencialidade (Decreto-Lei n.º 206/99, de 9 de Junho). 1.8. Sanções. 1.8.1. Poderes de controlo e fiscalização do INFARMED. 1.8.2. Suspensão da comercialização dos produtos por razões de saúde pública. 1.8. 3. As contra-ordenações 2. Produtos Homeopáticos. 2.1. Linhas gerais do Regime jurídico dos produtos homeopáticos (Decreto-Lei n.º 94/95, de 9 de Maio). 2.1.1. Garantia da qualidade e da segurança de utilização dos produtos homeopáticos como salvaguarda da saúde pública.2.1.2. Garantia aos seus utilizadores do fornecimento de informações claras sobre o seu carácter homeopático e a sua inocuidade). 2.2. Noção e modalidades de produtos homeopáticos. 2.2.1. Medicamentos homeopáticos. 2.2.2. Produtos farmacêuticos homeopáticos. 2.3. Delimitação do âmbito de aplicação da lei dos produtos homeopáticos aos produtos farmacêuticos homeopáticos e aplicação do regime jurídico dos medicamentos para uso humano (Decreto-Lei n.º 72/91, 8.2) aos medicamentos homeopáticos. 2.3.1. Comercialização de medicamentos homeopáticos entre fabricantes, grossistas, laboratórios e farmácias. 2.3.2. Venda de medicamentos homeopáticos ao público. 2.4. Regime de registo simplificado da introdução no mercado dos produtos farmacêuticos homeopáticos. 2.4.1. O pedido de registo. 2.4.2. Necessidade de autorização para o fabrico de produtos farmacêuticos homeopáticos. 2.4.3. Exigência de direcção técnica. 2.4.4. Requisitos relativos à rotulagem e ao folheto informativo. 2.5. Fiscalização e contra-ordenações. 3. Dispositivos Médicos – Regime jurídico dos dispositivos médicos (Decreto-Lei n.º 273/95, de 23 de Outubro, alterado pelo Decreto-Lei n.º 30/2003, de 14 de Fevereiro). 3.1. Noção e modalidades de dispositivos médicos. 3.2. Delimitação positiva e negativa do âmbito de aplicação do regime geral dos dispositivos médicos; regimes especiais, como o dos dispositivos médicos para diagnóstico in vitro (Decreto-Lei n.º 189/2000, de 12 de Agosto - que transpõe a Directiva 98/79/CE do Parlamento Europeu e do Conselho, de 27 de Outubro). 3.3. Requisitos de colocação no mercado. 3.3.1 As normas técnicas e os procedimentos de avaliação da conformidade. 3.3.2. Cláusula de salvaguarda – os poderes especiais do presidente do Conselho de Administração do INFARMED. 3.4. O sistema de vigilância (vide Portaria n.º 196/2004, de 1 de Março: aprova o Regulamento do Sistema Nacional de Vigilância de Dispositivos Médicos). 3.5. Fiscalização e contraordenaçõe

    Differences in Forage-Acquisition and Fungal Enzyme Activity Contribute to Niche Segregation in Panamanian Leaf-Cutting Ants

    No full text
    <div><p>The genera <i>Atta</i> and <i>Acromyrmex</i> are often grouped as leaf-cutting ants for pest management assessments and ecological surveys, although their mature colony sizes and foraging niches may differ substantially. Few studies have addressed such interspecific differences at the same site, which prompted us to conduct a comparative study across six sympatric leaf-cutting ant species in Central Panama. We show that foraging rates during the transition between dry and wet season differ about 60 fold between genera, but are relatively constant across species within genera. These differences appear to match overall differences in colony size, especially when <i>Atta</i> workers that return to their nests without leaves are assumed to carry liquid food. We confirm that Panamanian <i>Atta</i> specialize primarily on tree-leaves whereas <i>Acromyrmex</i> focus on collecting flowers and herbal leaves and that species within genera are similar in these overall foraging strategies. Species within genera tended to be spaced out over the three habitat categories that we distinguished (forest, forest edge, open grassland), but each of these habitats normally had only a single predominant <i>Atta</i> and <i>Acromyrmex</i> species. We measured activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in <i>Atta</i> gardens is lower than in <i>Acromyrmex</i> gardens. Expression profiles of fungal enzymes in <i>Atta</i> also appeared to be more specialized than in <i>Acromyrmex</i>, possibly reflecting variation in forage material. Our results suggest that species- and genus-level identities of leaf-cutting ants and habitat-specific foraging profiles may give predictable differences in the expression of fungal genes coding for decomposition enzymes.</p></div

    Differences in fungus garden enzyme activity.

    No full text
    <p>Differences in fungus garden enzyme activity between species grouped as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0094284#pone-0094284-g001" target="_blank">Figure 1</a> with solid lines for <i>Atta</i> and dotted lines for <i>Acromyrmex</i>, and with dark green, yellow and orange indicating the same habitat categories: (A) Heatmap showing differences between species and genera in fungus garden activity of enzyme classes, expressed as mean area in cm<sup>2</sup>±SE of colored halos on AZCL plates across all assays for enzymes belonging to the amylases (1), cellulases (2), hemicellulases (4), pectinases (3) and proteinases (2). Darker colors in the heatmap indicate higher mean activities, and the top-dendrogram illustrates similarities between species across all means for the five groups of enzymes, estimated by “pvclust” with 1000000 bootstraps. (B) Dendrogram based on the inverse Simpson Diversity Index of proportional enzyme activity showing that <i>Acromyrmex</i> fungus gardens have more even secretions across enzyme categories (D = 4.55±0.05 SE) than <i>Atta</i> (D = 4.18±0.07 SE, F<sub>1,52</sub> = 15.006, p<0.0001). Numbers above the branch nodes represent Approximately Unbiased p-values (AU, red) and Bootstrap Probability values (BP, green).</p

    Differences in forage diversity.

    No full text
    <p>Differences in forage diversity between leaf-cutting ant species (nested within genera), using solid lines for <i>Atta</i> and dotted lines for <i>Acromyrmex</i>, and with typical foraging habitat indicated with dark green (forest), yellow (forest edge), and orange (open sunlit areas): (A) Heatmap showing differences between species and genera in the use of forage categories, with numbers representing mean proportions ±SE of the forage types. Darker colors indicate higher mean acquisition proportions, with the top-dendrogram illustrating similarities between species/genera across means of the five forage categories (vertical axis). Ant species names are given as abbreviations (volc, octo, echi, col, sex, cep). (B) Dendrogram based on the Inverse Simpson Diversity Index of the five forage categories, indicating the degree of evenness across foraging categories (numbers below the branches are mean D-values ±SE per species and means per genus), showing that <i>Acromyrmex</i> has a broader (more even) spectrum (D = 1.86±0.08 SE) of forage material than <i>Atta</i> (D = 1.42±0.13 SE; F<sub>1,49</sub> = 5.435, p<0.05). Numbers above the branch nodes represent Approximately Unbiased p-values (AU, red) and Bootstrap Probability values (BP, green).</p

    Differences in foraging rate between loaded and unloaded foragers.

    No full text
    <p>Differences in foraging rate between loaded and unloaded foragers of <i>Atta</i> and <i>Acromyrmex</i> species in Gamboa, Panama, with summary statistics on the number of trails observed per species (number of colonies in brackets), the total number of minutes of observation per species, the total number of ants counted while returning to their nests, and the foraging rates for loaded and unloaded returning workers: means (± SE) per genus and per species (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0094284#pone.0094284.s001" target="_blank">Table S1</a> for details).</p

    A traffic light enzyme: acetate binding reversibly switches chlorite dismutase from a red- to a green-colored heme protein

    No full text
    Chlorite dismutase is a unique heme enzyme that catalyzes the conversion of chlorite to chloride and molecular oxygen. The enzyme is highly specific for chlorite but has been known to bind several anionic and neutral ligands to the heme iron. In a pH study, the enzyme changed color from red to green in acetate buffer pH 5.0. The cause of this color change was uncovered using UV-visible and EPR spectroscopy. Chlorite dismutase in the presence of acetate showed a change of the UV-visible spectrum: a redshift and hyperchromicity of the Soret band from 391 to 404 nm and a blueshift of the charge transfer band CT1 from 647 to 626 nm. Equilibrium binding titrations with acetate resulted in a dissociation constant of circa 20 mM at pH 5.0 and 5.8. EPR spectroscopy showed that the acetate bound form of the enzyme remained high spin S = 5/2, however with an apparent change of the rhombicity and line broadening of the spectrum. Mutagenesis of the proximal arginine Arg183 to alanine resulted in the loss of the ability to bind acetate. Acetate was discovered as a novel ligand to chlorite dismutase, with evidence of direct binding to the heme iron. The green color is caused by a blueshift of the CT1 band that is characteristic of the high spin ferric state of the enzyme. Any weak field ligand that binds directly to the heme center may show the red to green color change, as was indeed the case for fluoride

    Correction to: A traffic light enzyme: acetate binding reversibly switches chlorite dismutase from a red- to a green-colored heme protein (JBIC Journal of Biological Inorganic Chemistry, (2020), 25, 4, (609-620), 10.1007/s00775-020-01784-1)

    No full text
    In the original article published, in the gy value (column) of the H2O/OH−species (row) of Table 2 was mistakenly given as “1.18” and the correct value is “2.18”.</p
    corecore