6 research outputs found

    Non-photopic and photopic visual cycles differentially regulate immediate, early and late-phases of cone photoreceptor-mediated vision

    Get PDF
    Cone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters (atRE) to 11-cis-retinol (11cROL) is mediated by the retinoid isomerohydrolase Rpe65. A putative alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, whereas emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaption displayed significantly attenuated immediate photopic vision concomitant with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 minutes of light, early photopic vision recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde (9cRAL) supplementation. Genetic knockout of Des1 (degs1) or retinaldehyde-binding protein 1b (rlbp1b) did not eliminate photopic vision in zebrafish. Our findings define molecular and temporal requirements of the non-photopic or photopic visual cycles for mediating vision in bright light.European Commission Horizon 2020Irish Research CouncilNational Institutes of Health12 month embargo limited to 6 months due to H2020 - A

    Stereoselective beta-mannosylations and beta-rhamnosylations from glycosyl hemiacetals mediated by lithium iodide

    No full text
    Stereoselective β-mannosylation is one of the most challenging problems in the synthesis of oligosaccharides. Herein, a highly selective synthesis of β-mannosides and β-rhamnosides from glycosyl hemi-acetals is reported, following a one-pot chlorination, iodination, glycosylation sequence employing cheap oxalyl chloride, phosphine oxide and LiI. The present protocol works excellently with a wide range of glycosyl acceptors and with armed glycosyl donors. The method doesn't require conformationally restricted donors or directing groups; it is proposed that the high β-selectivities observed are achieved via an SN2-type reaction of α-glycosyl iodide promoted by lithium iodide

    Chemical Biology of Visual Cycles Enabling Cone Vision

    No full text
    Cone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters (atRE) to 11-cis-retinol (11cROL) is mediated by the retinoid isomerohydrolase Rpe65. A putative alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, whereas emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaption displayed significantly attenuated immediate photopic vision concomitant with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 minutes of light, early photopic vision recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde (9cRAL) supplementation. Genetic knockout of Des1 (degs1) or retinaldehyde-binding protein 1b (rlbp1b) did not eliminate photopic vision in zebrafish. Our findings define molecular and temporal requirements of the non-photopic or photopic visual cycles for mediating vision in bright light.European Commission Horizon 2020Irish Research CouncilNational Institutes of Health12 month embargo limited to 6 months due to H2020 - A

    Chemoselective Protection of Glutathione in the Preparation of Bioconjugates: The Case of Trypanothione Disulfide

    No full text
    A novel synthetic route to the chemoselectively protected <i>N</i>,<i>S-</i>ditritylglutathione monomethyl ester is described involving the chemical modification of the commercially available glutathione (GSH). The synthetic value of this building block in the facile preparation of GSH bioconjugates in a satisfying overall yield was exemplified by the case of trypanothione disulfide (TS<sub>2</sub>), a GSH-spermidine bioconjugate, involved in the antioxidative stress protection system of parasitic protozoa, such as trypanosoma and leishmania parasites

    Synthesis of Novel G Factor or Chloroquine-Artemisinin Hybrids and Conjugates with Potent Antiplasmodial Activity

    No full text
    International audienceA series of novel hybrids of artemisinin (ART) with either a phytormone endoperoxide G factor analogue (GMeP) or chloroquine (CQ) and conjugates of the same compounds with the polyamines (PAs) spermidine (Spd) and homospermidine (Hsd) were synthesized and their antimalarial activity were evaluated using the CQ-resistant P. falciparum FcB1/Colombia strain. The ART-GMeP hybrid 5 and compounds 9 and 10 which are conjugates of Spd and Hsd with two molecules of ART, and one molecule of GMeP, were the most potent with IC50 values of 2.6, 8.4 and 10.6 nM, respectively. The same compounds also presented the highest selectivity indexes against the primary human fibroblast cell line AB943 ranging from 16,372 for the hybrid 5 to 983 for the conjugate 10 of Hsd
    corecore