4,880 research outputs found

    Optimal branching structure of fluidic networks with permeable walls

    Get PDF
    Biological and engineering studies of Hess-Murray’s law are focused on assemblies of tubes with impermeable walls. Blood vessels and airways have permeable walls to allow the exchange of fluid and other dissolved substances with tissues. Should Hess-Murray’s law hold for bifurcating systems in which the walls of the vessels are permeable to fluid? This paper investigates the fluid flow in a porous-walled T-shaped assembly of vessels. Fluid flow in this branching flow structure is studied numerically to predict the configuration that provides greater access to the flow. Our findings indicate, among other results, that an asymmetric flow (i.e., breaking the symmetry of the flow distribution) may occur in this symmetrical dichotomous system. To derive expressions for the optimum branching sizes, the hydraulic resistance of the branched system is computed. Here we show the T-shaped assembly of vessels is only conforming to Hess-Murray’s law optimum as long as they have impervious walls. Findings also indicate that the optimum relationship between the sizes of parent and daughter tubes depends on the wall permeability of the assembled tubes. Our results agree with analytical results obtained from a variety of sources and provide new insights into the dynamics within the assembly of vessels

    Integrating Superconductive and Optical Circuits

    Full text link
    We have integrated on oxidized silicon wafers superconductive films and Josephson junctions along with sol-gel optical channel waveguides. The fabrication process is carried out in two steps that result to be solid and non-invasive. It is demonstrated that 660 nm light, coupled from an optical fibre into the channel sol-gel waveguide, can be directed toward superconducting tunnel junctions whose current-voltage characteristics are affected by the presence of the radiation. The dependence of the change in the superconducting energy gap under optical pumping is discussed in terms of a non-equilibrium superconductivity model.Comment: Document composed of 7 pages of text and 3 figure

    Role of surgical setting and patients-related factors in predicting the occurrence of postoperative pulmonary complications after abdominal surgery

    Get PDF
    OBJECTIVE: The aim of this retrospective study was to evaluate the role of surgical setting (urgent vs. elective) and approach (open vs. laparoscopic) in affecting postoperative pulmonary complications (PPCs) prevalence in patients undergoing abdominal surgery. PATIENTS AND METHODS: After local Ethical Committee approval, 409 patients who had undergone abdominal surgery between January and December 2014 were included in the final analysis. PPCs were defined as the development of one of the following new findings: respiratory failure, pulmonary infection, aspiration pneumonia, pleural effusion, pneumothorax, atelectasis on chest X-ray, bronchospasm or un-planned urgent re-intubation. RESULTS: PPCs prevalence was greater in urgent (33%) vs. elective setting (7%) (chi(2) with Yates correction: 44; p=0.0001) and in open (6%) vs. laparoscopic approach (1.9%) (chi(2) with Yates correction: 12; p=0.0006). PPCs occurrence was positively correlated with in-hospital mortality (Biserial Correlation r=0.37; p=0.0001). Logistic regression showed that urgent setting (p=0.000), Ariscat (Assess Respiratory Risk in Surgical Patients in Catalonia) score (p=0.004), and age (p=0.01) were predictors of PPCs. A cutoff of 23 for Ariscat score was also identified as determining factor for PPCs occurrence with 94% sensitivity and 29% specificity. CONCLUSIONS: Patients undergoing abdominal surgery in an urgent setting were exposed to a higher risk of PPCs compared to patients scheduled for elective procedures. Ariscat score fitted with PPCs prevalence and older patients were exposed to a higher risk of PPCs. Prospective studies are needed to confirm these result

    Strong HI Lyman-α\alpha variations from the 11 Gyr-old host star Kepler-444: a planetary origin ?

    Full text link
    Kepler-444 provides a unique opportunity to probe the atmospheric composition and evolution of a compact system of exoplanets smaller than the Earth. Five planets transit this bright K star at close orbital distances, but they are too small for their putative lower atmosphere to be probed at optical/infrared wavelengths. We used the Space Telescope Imaging Spectrograph instrument onboard the Hubble Space Telescope to search for the signature of the planet's upper atmospheres at six independent epochs in the Ly-α\alpha line. We detect significant flux variations during the transits of both Kepler-444e and f (~20%), and also at a time when none of the known planets was transiting (~40%). Variability in the transition region and corona of the host star might be the source of these variations. Yet, their amplitude over short time scales (~2-3 hours) is surprisingly strong for this old (11.2+-1.0Gyr) and apparently quiet main-sequence star. Alternatively, we show that the in-transits variations could be explained by absorption from neutral hydrogen exospheres trailing the two outer planets (Kepler-444e and f). They would have to contain substantial amounts of water to replenish such hydrogen exospheres, which would reveal them as the first confirmed ocean-planets. The out-of-transit variations, however, would require the presence of a yet-undetected Kepler-444g at larger orbital distance, casting doubt on the planetary origin scenario. Using HARPS-N observations in the sodium doublet, we derived the properties of two Interstellar Medium clouds along the line-of-sight toward Kepler-444. This allowed us to reconstruct the stellar Ly-α\alpha line profile and to estimate the XUV irradiation from the star, which would still allow for a moderate mass loss from the outer planets after 11.2Gyr. Follow-up of the system at XUV wavelengths will be required to assess this tantalizing possibility.Comment: Accepted for publication in A&A Name of the system added to the title in most recent versio

    Proximity effect in planar superconducting tunnel junctions containing Nb/NiCu superconductor/ferromagnet bilayers

    Get PDF
    We present experimental results concerning both the fabrication and characterization of superconducting tunnel junctions containing superconductor/ferromagnet (S/F) bilayers made by niobium (S) and a weak ferromagnetic Ni0.50Cu0.50 alloy. Josephson junctions have been characterized down to T=1.4 K in terms of current-voltage I-V characteristics and Josephson critical current versus magnetic field. By means of a numerical deconvolution of the I-V data the electronic density of states on both sides of the S/F bilayer has been evaluated at low temperatures. Results have been compared with theoretical predictions from a proximity model for S/F bilayers in the dirty limit in the framework of Usadel equations for the S and F layers, respectively. The main physical parameters characterizing the proximity effect in the Nb/NiCu bilayer, such as the coherence length and the exchange field energy of the F metal, and the S/F interface parameters have been also estimated

    Dimensional reduction of electromagnetism

    Get PDF
    We derive one- and two-dimensional models for classical electromagnetism by making use of Hadamard's method of descent. Low-dimensional electromagnetism is conceived as a specialization of the higher-dimensional one, in which the fields are uniform along the additional spatial directions. This strategy yields two independent electromagnetisms in two spatial coordinates and four independent electromagnetisms in one spatial coordinate

    Otimização de design do duto ramificado em forma de T com escoamento de fluido newtoniano e paredes impermeáveis

    Get PDF
    Este artigo apresenta os resultados de escoamentos em dutos em forma de “T”. O problema consiste em encontrar as resistências ao escoamento em estruturas tridimensionais (3D) cujos sistemas têm diferentes relações homotética entre tamanhos (diâmetros e comprimentos) dos dutos de entrada e saída de fluído. O método utilizado é denominado “Constructal Design” e é fundamentado na “Teoria Constructal”. Este método baseia-se na minimização da resistência global sujeito a restrições geométricas, que no presente estudo são o volume e área ocupada pelos dutos considerados constantes. O escoamento nos dutos é considerado tridimensional, laminar, incompressível, e em regime permanente e com propriedades uniformes e constantes. Os resultados obtidos numericamente em geometrias 3D é validado por comparação com os resultados analíticos bidimensional disponíveis na literatura. A geometria será estudada para diferentes relações D1 / D0 e L1 / L0, para diferentes número de Reynolds

    RF assisted switching in magnetic Josephson junctions

    Get PDF
    We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications

    Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star

    Get PDF
    Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass (M=0.77±0.05MM_*=0.77\pm0.05\,M_{\odot}) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-HIRES radial velocities, and MOST and Spitzer photometry. HD 97658 b is a massive (MP=7.550.79+0.83MM_P=7.55^{+0.83}_{-0.79} M_{\oplus}) and large (RP=2.2470.095+0.098RR_{P} = 2.247^{+0.098}_{-0.095} R_{\oplus} at 4.5 μ\mum) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, by at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for coming space missions TESS, CHEOPS, PLATO, and also JWST, to characterize thoroughly its structure and atmosphere.Comment: 8 figures, accepted to Ap

    Dimensional reduction of the Dirac equation in arbitrary spatial dimensions

    Get PDF
    We investigate the general properties of the dimensional reduction of the Dirac theory, formulated in a Minkowski spacetime with an arbitrary number of spatial dimensions. This is done by applying Hadamard’s method of descent, which consists in conceiving low-dimensional theories as a specialization of high-dimensional ones that are uniform along the additional space coordinate. We show that the Dirac equation reduces to either a single Dirac equation or two decoupled Dirac equations, depending on whether the higher-dimensional manifold has even or odd spatial dimensions, respectively. Furthermore, we construct and discuss an explicit hierarchy of representations in which this procedure becomes manifest and can easily be iterated
    corecore