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ABSTRACT
We derive one- and two-dimensional models for classical electromagnetism by making use of Hadamard’s method of descent.
Low-dimensional electromagnetism is conceived as a specialization of the higher-dimensional one, in which the fields are uniform along
the additional spatial directions. This strategy yields two independent electromagnetisms in two spatial coordinates and four independent
electromagnetisms in one spatial coordinate.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079363

I. INTRODUCTION
Questions about space, its flatness, and its number of dimensions have always fascinated physicists,1 mathematicians,2 and novelists

alike.3–5 We live in three spatial dimensions, but we often wonder about worlds with a different number of dimensions and try to build a
consistent picture of such worlds, whose properties are beyond our sensorial perceptions, but certainly not out of the reach of our imagination.

Ehrenfest, one century ago, wondered whether the fundamental laws of physics “require,” in some sense, that there be three (space)
dimensions.1 Ehrenfest realized that there are a number of geometric peculiarities that make three dimensions different. He observed that
(i) in a generic (n + 1)-dimensional spacetime, the number of components of the electric field is equal to the number of independent boosts,
which, in turn, is equal to the number n of spatial coordinates; (ii) the number of components of the magnetic field is equal to the number
of independent rotations ( n

2 ) = n(n − 1)/2, coinciding with the number of orthogonal two-dimensional planes; and (iii) these two numbers
are equal to each other and to 3, only for n = 3, while, for all other values of n, the electric and magnetic fields have an unequal number
of components. From this perspective, the laws of electromagnetism entail the three-dimensionality of space because the “dualism between
the electric and magnetic quantities” is a characteristic of our world. According to Ehrenfest, three (and four) dimensions appear different
and somehow more interesting. These seminal intuitions have been corroborated by mathematical and physical research in the decades that
followed. It is curious that such technical observations motivate scientists to ask bold questions and that even philosophers would not dare to
formulate. One such question is how would the world look like in two or even one space dimension?

In this article, we will not tackle this general and very difficult question and will rather content ourselves with a simpler query. We will
ask which form can the laws of electromagnetism (EM) take in n < 3 space dimensions. A moment’s reflection shows that even this humbler
question is void of meaning, unless one specifies a “procedure” that enables one to reduce the number of dimensions. In particular, what
should one demand to a one- or two-dimensional world? Which symmetries, fields, potentials, Lorentz force, Maxwell’s equations, vector
products, and relativistic and gauge invariance should apply? Is it possible to formulate EM in n < 3 space dimensions in such a way that all
the above properties are consistently defined?

J. Math. Phys. 63, 022902 (2022); doi: 10.1063/5.0079363 63, 022902-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1063/5.0079363
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0079363
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0079363&domain=pdf&date_stamp=2022-February-16
https://doi.org/10.1063/5.0079363
https://orcid.org/0000-0002-6801-5976
https://orcid.org/0000-0001-9152-6515
https://orcid.org/0000-0003-2662-2193
https://orcid.org/0000-0002-7214-5685
https://orcid.org/0000-0002-7407-063X
mailto:paolo.facchi@ba.infn.it
https://doi.org/10.1063/5.0079363


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

In order to formulate EM in n < 3 space dimensions, we will adopt a strategy proposed by Hadamard6 one century ago, known as
method of descent. The idea, in Hadamard’s words, “consists in noting that he who can do more can do less: if we can integrate equations with
m variables, we can do the same for equations with m − 1 variables.” Hadamard’s primary objective was to solve a differential equation, such
as the wave and heat equations, depending on a set of n independent variables, by regarding it as a special case of a more general problem,
depending on the larger set of n + 1 independent variables, and by integrating out the additional variable. Observe that we are adopting an
informal geometric meaning of the term dimension. In three-dimensional space, three parameters (Cartesian coordinates) are required to
determine the position of a point. Hadamard simply integrated out one of them to “descend” to two-dimensional space and integrated out a
second variable to descend to one-dimensional space. The strength of the method lies in its ingenious simplicity.

The strategy is simple, yet very powerful: low-dimensional EM is viewed as a particular case of the higher-dimensional one, in which all
relevant quantities are uniform along the additional spatial directions. As we shall see, this procedure, inspired by Hadamard’s descent method,
will yield two independent EMs in two spatial coordinates and four independent EMs in one spatial coordinate. Each low-dimensional model
will have its own characteristics and physical properties. Some of these features have been investigated in relation with the quantization
of (lattice) gauge theories in one and two dimensions.7–13 In our analysis, we will also recover some models that have been studied in the
literature.14–18

The interest of EM in lower dimensions is not purely academic. Nowadays, quantum technologies enable one to perform quantum
simulations of low-dimensional gauge theories,19–25 enabling one to study phenomena, such as real-time dynamics and the string-breaking
mechanism, that were out of the reach of numerical investigation and research until a few decades ago.

Moreover, recent advances in waveguide quantum electrodynamics make possible the investigation of dimensional reduction, field
confinement effects, and field-mediated coupling in one-26–29 and two-dimensional systems,30,31 enabling comparison among different
dimensional features.32 We hope that our analysis can yield insights into these problems.

This article is organized as follows. We review electromagnetism in 3 + 1 dimensions in Sec. II, focusing on its tensor structure. We
perform Hadamard’s first descent, from three to two spatial dimensions, in Sec. III, and we observe that Maxwell’s equations split up into two
independent uncoupled sets of equations, each one made up of four coupled equations. We perform the second (and last) descent, from two
to one spatial dimensions, in Sec. IV: the two independent sets of equations obtained from the first descent split up again into two uncoupled
sets of equations, yielding four independent electromagnetisms. One of these theories is trivial, and some of them are known in the literature.
We conclude in Sec. V with a discussion and a perspective.

II. PRELIMINARIES: ELECTROMAGNETISM IN 3 + 1 DIMENSIONS
The starting point of our analysis is the classical formulation of electromagnetism in three spatial dimensions.33–35 The tensor structure

of the theory is manifest in its formulation in a (3 + 1)-dimensional Minkowski spacetime.36 In this work, our main focus is on the behavior
of the EM field components as the spatial dimension is lowered; therefore, charges and currents will be considered as non-dynamical sources
depending on the space-time coordinates.

A. Fields and tensors
The EM field in the (3 + 1)-dimensional Minkowski space, for which we assume a metric tensor η with signature (ημν)

= diag(1,−1,−1,−1), can be described in terms of the field tensor F, coupled to a four-vector current j, and its dual pseudotensor G,

(Fμν) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (Gμν) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (j μ) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

cρ
Jx

Jy

Jz

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (1)

In the above equations and throughout the paper, we adopt Heaviside–Lorentz units, in which the components of the electric and magnetic
fields have the same dimensions. The tensors F and G are both rank-2 antisymmetric, and duality between them is expressed by the relations
Gμν = 1

2 ϵμνρσFρσ and Fμν = − 1
2 ϵμνρσGρσ , for μ, ν ∈ {0, 1, 2, 3}, with ϵ0123 = 1. The components of the electric E and magnetic field B, the charge

density ρ, and the current density J determine the block structure of these quantities,

(2)

with ⊺ denoting transposition and the tilde representing duality in R3 (ṽ being the linear map x ↦ x × v).
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Under a proper three-dimensional spatial rotation (in this article, we shall not focus on discrete symmetries, such as space and time
inversions), both E and B transform like three-vectors, no mixing between the electric and magnetic components occurs, and the block
structure (2) of F and G is preserved, as expected from a general property of rank-2 antisymmetric Minkowski tensors, whose 3⊕ 3 decompo-
sition is invariant with respect to proper rotations SO(3). Likewise, proper rotations leave the charge density ρ unchanged and transform the
current density J like a three-vector, preventing mixing between ρ and the components of J and preserving the block structure (2) of j, which
thus behaves like a vector, characterized by an invariant 1⊕ 3 decomposition with respect to SO(3).

The dynamics in an inertial reference frame is determined by Maxwell’s equations,

∂μGμν = 0, (3)

∂μFμν = 1
c

j ν, (4)

with (∂μ) = (c−1∂t ,∂x,∂y,∂z), which read, in terms of the electric and magnetic fields,

(magnetic Gauss) div B = 0, (5)

(Faraday) 1
c
∂tB + curl E = 0, (6)

(electric Gauss) div E = ρ, (7)

(Ampère-Maxwell) − 1
c
∂tE + curl B = 1

c
J. (8)

It will be convenient in the following to have the explicit expression of the above Maxwell equations in components:

∂xBx + ∂yBy + ∂zBz = 0, (9)
1
c
∂tBx + ∂yEz − ∂zEy = 0, (10)

1
c
∂tBy + ∂zEx − ∂xEz = 0, (11)

1
c
∂tBz + ∂xEy − ∂yEx = 0, (12)

∂xEx + ∂yEy + ∂zEz = ρ, (13)

−1
c
∂tEx + ∂yBz − ∂zBy =

1
c

Jx, (14)

−1
c
∂tEy + ∂zBx − ∂xBz =

1
c

Jy, (15)

−1
c
∂tEz + ∂xBy − ∂yBx =

1
c

Jz . (16)

Starting from Maxwell’s equations, one can derive a wave equation for each of the EM field components,

◻Fμν = 1
c
(∂μj ν − ∂νj μ), (17)

with ◻ = ∂μ∂μ = c−2∂2
t − ∂2

x − ∂2
y − ∂2

z = c−2∂2
t − Δ, where the role of the sources is played by the antisymmetrized derivatives of the four-

current components.

B. Potentials and Lagrangian
Homogeneous Maxwell’s equations (3), which can be equivalently expressed as

ϵμνρσ∂νFρσ = 0, (18)

provide source-independent constraints on the components of the EM field. These equations are satisfied by expressing the field tensor in
terms of a four-potential vector A = (Aμ) = (Φ, Ax, Ay, Az) such that

Fμν = ∂μAν − ∂νAμ (19)
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for μ, ν ∈ {0, 1, 2, 3}. In the non-covariant formalism, the relation between fields and potentials reads

B = curl A, (20)

E = −∇Φ − 1
c
∂tA. (21)

In this way, the number of degrees of freedom of the EM field is reduced to four. A further reduction derives from the observation that the
definition of fields in terms of potentials is invariant under gauge transformations,

Aμ → A′μ = Aμ + ∂μ f , (22)

with f = f (t, x, y, z) being a scalar function. If the gauge choice is made in such a way that the Lorentz condition ∂νAν = 0 holds, then the
potential obeys the wave equation

◻ Aμ = 1
c

j μ, (23)

from which the wave equation (17) for the field components can be immediately derived.
While the homogeneous equations are a direct consequence of expressing Fμν as an antisymmetrized derivative of the potential, the

inhomogeneous equations (4) can be derived from the Lagrangian density

L3+1(A) = −
1
4
(∂μAν − ∂νAμ)(∂μAν − ∂νAμ) −

1
c

j μAμ

= 1
2
(E2 − B2) − ρ Φ + 1

c
J ⋅ A, (24)

by considering the set of Euler–Lagrange equations associated with each component Aμ of the potential.

III. FIRST DESCENT: FROM 3 TO 2 SPATIAL DIMENSIONS
A. Fields

We now apply Hadamard’s strategy and perform the first descent along the z direction, specializing the Maxwell differential problem
into a z-independent one (any other direction would lead to identical results). We start from Maxwell’s equations in 3 + 1 dimensions and
require that both sources and solutions are z-independent so that all terms containing derivatives with respect to z vanish. It is straightforward
to see that Maxwell’s equations (8) and (9) split up into two independent (uncoupled) sets, each one made up of four equations. We give all
details in the following. See Fig. 1.

1. (Ex , Ey , Bz) sector
The first subsystem is obtained from Eqs. (12)–(15). It determines the dynamics and the constraints involving the field components Ex,

Ey, and Bz ,

1
c
∂tBz + ∂xEy − ∂yEx = 0, (25)

∂xEx + ∂yEy = ρ, (26)

−1
c
∂tEx + ∂yBz =

1
c

Jx, (27)

−1
c
∂tEy − ∂xBz =

1
c

Jy, (28)

and it contains three inhomogeneous equations, with source terms ρ, Jx, and Jy. Observe that, since ∂zJz = 0, the continuity equation, ∂tρ
+ ∂xJx + ∂yJy = 0, pertains only to this subsystem. This is the usual reduction of EM in 2 + 1 dimensions, which preserves the minimal
features of the 3 + 1 structure. We propose a pictorial representation in Fig. 2.

J. Math. Phys. 63, 022902 (2022); doi: 10.1063/5.0079363 63, 022902-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

FIG. 1. (a) Graphical representation of the structure of Maxwell’s equations in 3 + 1 dimensions and (b) that after the first-dimensional reduction. Vertices are either fields
[E (the red shaded circle), B (the blue shaded circle)] or sources [ρ (the orange shaded square), J (the red shaded square)], and edges show the couplings, two vertices
being linked if and only if they appear in the same differential equation [ELECTRIC GAUSS (the orange line), MAGNETIC GAUSS (the blue line), FARADAY (the green line),
and AMPÈRE–MAXWELL (the purple line)]. The assumption of z-independence is represented by the dashed horizontal line, which isolates two sectors governed by
independent field equations. The Maxwell system in 3 + 1 dimensions is a connected graph, and each equation is a connected subgraph. By performing the descent,
the graph splits up into two connected components: homogeneous equations (29)–(31) are reduced to a single edge, inhomogeneous equations (25)–(27) are reduced to a
triangular subgraph, whereas Eqs. (25) and (32) (which are also the only equations involving all the variables of each set) are unchanged.

FIG. 2. Top panels: z-independent sources in a three-dimensional space. Lower panels: their representation in the (2 + 1) electromagnetism. (Ex , Ey , Bz) sector: (a) an
indefinite (red) charged wire and a (blue) solenoid with the current vector orthogonal to z (b) are represented in two dimensions by a (red) point charge and a (blue) circular
current loop in the (x, y) plane. (Bx , By , Ez) sector: (c) two indefinite (blue) current wires parallel to z (d) are represented in two dimensions by two blue “point charges” of
opposite sign.

2. (Bx , By , Ez) sector
The second subsystem derives from Eqs. (9)–(11) and (16) and involves the complementary set of field components. Maxwell’s equations

in this sector reduce to

∂xBx + ∂yBy = 0, (29)
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1
c
∂tBx + ∂yEz = 0, (30)

1
c
∂tBy − ∂xEz = 0, (31)

−1
c
∂tEz + ∂xBy − ∂yBx =

1
c

Jz , (32)

where a single inhomogeneous equation is present, with source term Jz . See again Fig. 2.

B. Tensor notation
As a result of the first descent, the EM field tensor and its dual and the four-current tensor are partitioned as follows:

(33)

where the components related to different sectors belong to different blocks. By switching to the tensor notation, we see that the manifest
duality between the blocks of equal sector in F and G is a consequence of the interplay between (3 + 1)- and (2 + 1)-duality for a rank-2
antisymmetric (3 + 1)-tensor,

Gab = 1
2
(ϵabc3Fc3 + ϵab3cF3c) = ϵabcFc3, (34)

Ga3 = 1
2

ϵa3bcFbc =
1
2

ϵabcFbc. (35)

Henceforth, the latin indices a, b, c are assumed to vary in {0, 1, 2}, regardless of whether they are free or contracted. In the tensor form, the
system of Eqs. (25)–(28) of the (Ex, Ey, Bz) sector reads

ϵabc∂aFbc = 0, (36)

∂aFab = 1
c

j b, (37)

with a ∈ {0, 1, 2}. (Fab) is an antisymmetric tensor of order 3, while its dual (Ga3) behaves as a vector in a (2 + 1)-dimensional space, such as
the source ( ja).

The tensor form of Maxwell’s equations (29)–(32) for the (Bx, By, Ex) sector reads

ϵabc∂bFc3 = 0, (38)

∂aFa3 = 1
c

j 3, (39)

where (Fa3) is now a three-component vector, its dual (Gab) is an antisymmetric tensor of order 3, and the source j3 is a scalar. The form of
Eqs. (36)–(39) is similar to that of relativistic Maxwell’s equations (3) and (4). However, note that, in each subsystem, the field tensor and the
source are different kinds of objects, with a closer analogy to the (3 + 1) case valid only in the (Ex, Ey, Bz) sector.

In both sectors, Maxwell’s equations determine that field components propagate as waves in two dimensions: indeed, in a z-independent
framework, the d’Alembert operator is effectively replaced by ∂a∂

a = c−2∂2
t − ∂2

x − ∂2
y , and from Eq. (17), we obtain

∂a∂
aFbc = 1

c
(∂bj c − ∂cj b), (40)

∂a∂
aFb3 = 1

c
∂bj 3. (41)

Note, also in this case, the different form of Eq. (41) in the (Bx, By, Ez) sector, highlighting the effective scalar nature of the source.
Finally, we observe that, since the solutions of Eqs. (40) and (41) are special cases of free wave propagation in 3 + 1 dimensions, wave

propagation occurs in all sectors with both the electric and magnetic fields transverse to the propagation direction, namely, borrowing
terminology from photonics, in a TEM mode.
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C. Remark: Stationary electromagnetism as a special case of descent
In Secs. III A and III B, we derived the equations for the electromagnetic field in the case of invariance along a given spatial coordinate.

It is worth remarking that even the familiar magnetostatics,

div B = 0, (42)

curl B = 1
c

J, (43)

and electrostatics,

curl E = 0, (44)
div E = ρ, (45)

can be viewed as special cases of Maxwell’s equations obtained by dimensional reduction, performed in this case along the time axis t.
Indeed, the condition of time independence of the fields generates two sectors: the magnetostatic one, in which the components (Bx, By, , Bz)
appear in

ϵkℓm∂kFℓm = 0, (46)

∂kFkℓ = 1
c

j ℓ, (47)

with k, ℓ, m ∈ {1, 2, 3}, and the electrostatic one, in which the components (Ex, Ey, Ez) satisfy

ϵkℓm∂kFℓ0 = 0, (48)

∂kFk0 = 1
c

j 0. (49)

The correspondence between the magnetostatic equations (46) and (47) and (Ex, Ey, Bz) EM (36) and (37), on the one hand, and between
the electrostatic equations (48) and (49) and (Bx, By, Ex) EM (38) and (39) is fairly evident. The derivation of static EM and the parallelism
between the two cases of space and time descent is graphically represented in Fig. 3. However, due to the signature of the Minkowski metric

FIG. 3. Graphical representation of stationary Maxwell’s equations [(a) and (b)], compared with the result of the reduction along the third space direction (c). Time inde-
pendence is represented by the dashed circle in (a), isolating B (the blue shaded circle) and J (the red shaded square) from E (the red shaded circle) and ρ (the orange
shaded square). While ELECTRIC GAUSS (the orange line) and MAGNETIC GAUSS (the blue line) are preserved, each component of FARADAY (the green line) is reduced to
a single edge and each component of AMPÈRE–MAXWELL (the purple line) is reduced to a triangular subgraph. The effect is similar to what happens in the descent along z.
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tensor, the dimensional reduction along the time axis reduces the d’Alembert operator to the Laplacian ∂k∂
k = −Δ, and instead of wave

propagation [(40) and (41)], we have the following Poisson equations:

−ΔFkℓ = 1
c
(∂kj ℓ − ∂ℓj k), (50)

−ΔFk0 = 1
c
∂kj 0. (51)

D. Potentials and Lagrangian
The two sectors emerging from the descent along z are related to two distinct parts of the (3 + 1) EM Lagrangian density,

L3+1 = (−
1
4

FabFab − 1
c

j aAa) + (−
1
2

Fa3Fa3 − 1
c

j 3A3) =: LEEB +LBBE. (52)

The inhomogeneous equations (37) and (39) can be obtained from the Euler–Lagrange equations generated by the single terms LEEB and LBBE,
respectively, specialized to the case of z-independent fields and sources. Note, however, that, in general, the two parts of the Lagrangian are
not decoupled since the components Aa appear not only in LEEB but also in LBBE, through their derivatives ∂3Aa along the descent coordinate.
However, decoupling can occur even at the level of the Lagrangian, by choosing a z-independent potential, as for the fields and the sources.
The gauge fixing ∂3Aa = 0, analogous to the request of time-independent potentials in stationary EM and evidently allowed by both the
homogeneous and the inhomogeneous Eqs. (38) and (39), decouples the total Lagrangian density into the sum of the following terms:

LEEB(A0, A1, A2) = −1
4
(∂aAb − ∂bAa)(∂aAb − ∂bAa) − 1

c
j aAa

= 1
2
(E2

x + E2
y − B2

z) − ρ Φ + 1
c
(JxAx + JyAy) (53)

and
LBBE(A3) = −1

2
(∂aA3)(∂aA3) − 1

c
j 3A3 =

1
2
(E2

z − B2
x − B2

y) +
1
c

JzAz , (54)

leaving in the first sector the gauge freedom with respect to transformations Aa → Aa + ∂a f with f = f (t, x, y). The Euler–Lagrange equation
in a (2 + 1)-dimensional space, associated with the above Lagrangian densities, expressed as functions of their respective variables, yields
Eqs. (37) and (39).

E. Symmetries
The invariance along the third spatial coordinate, which we assume in a specific inertial frame, is obviously not preserved by general

Lorentz transformations. Lorentz transformations Λ that maintain z-invariance in the transformed frame form the subgroup of matrices with
the block-diagonal form,

(55)

with L ∈ O(2, 1) and Q ∈ O(1) = {+1,−1}.
The matrices with Q = 1 are the elements of the isotropy group (little group) of the unit vector (0, 0, 0, 1) and, in fact, leave invariant all

points of the z axis. The matrices with Q = −1, instead, map (0, 0, 0, 1) to (0, 0, 0,−1) and invert the z axis.
Observe that an inversion of the third axis implies that ρ→ ρ, j3 → −j3, E3 → −E3, ja → ja, and Ea → Ea for a = 1, 2. Moreover, it can also

be seen as the composition of the parity transformation so that B→ B and a rotation of ±π around the third axis so that Ba → −Ba for a = 1, 2,
whereas B3 → B3. As a result, only a (3 + 1)-inertial observer can note the effects of the sign of Q. Equations (38) and (39) are unaffected by
it, and each subsystem is manifestly invariant with respect to transformations in 2 + 1 dimensions. We also understand the algebraic nature
of the decompositions entailed by the block structures (33), which correspond to the 3⊕ 3 decomposition of the antisymmetric tensor field
F and the 3⊕ 1 decomposition of the vector field J with respect to SO(2, 1)↑.37,38

IV. SECOND DESCENT: FROM 2 TO 1 SPATIAL DIMENSIONS
A. Fields

We now perform the second descent along the y direction by assuming that both the sources and the solutions of the equations of the
first descent be also y independent. Each subsystem, (25)–(32), arising from the first descent, splits up into two uncoupled sets of equations,
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FIG. 4. Graphical representation of the equations of the second descent. (a) Effects of the first (dashed line) and second (dashed-dotted line) descent on the Maxwell graph. (b)
Effects of the second descent on the graphs of the first descent. (c) Graphs of the equations of the second descent. In particular, MAGNETIC GAUSS (the blue line) is reduced
to the vertex Bx and ELECTRIC GAUSS (the orange line) is reduced to the link between Ex and ρ; each component of FARADAY (the green line) is reduced to a single edge;
as to AMPÈRE–MAXWELL (the purple line), the x component is reduced to the link between Ex and Jx , while the other two components are reduced to the only nontrivial
(triangular) subgraphs.

as graphically represented in Fig. 4. Specifically, the sector (Ex, Ey, Bz) is decoupled into (Ex) and (Ey, Bz), while the sector (Bx, By, Ez) splits
into (By, Ez) and (Bx).

1. (Ex) sector
The first sector is made of a single component Ex, governed by a system of two inhomogeneous equations,

∂xEx = ρ, (56)
−∂tEx = Jx. (57)

The source terms ρ and Jx are the only components of the source vector that are still linked by the remnants

∂tρ + ∂xJx = 0 (58)

of the (3 + 1)-dimensional continuity equation, which can be also obtained by direct derivation of Eqs. (56) and (57). Note that the dynamics
in the (Ex) sector does not depend on the speed of light, which is canceled out in Eq. (57). The general solution

Ex(t, x) = Ex(t0, x0) + ∫
x

x0

dx′ρ(t, x′) − ∫
t

t0

dt′Jx(t′, x0) (59)

confirms that no wave propagation occurs in this sector.18 A pictorial representation of the sources is given in Figs. 5(a) and 5(b). This is the
model that is normally adopted in the quantization of EM in 1 + 1 dimensions.8–10

2. (Ey , Bz) sector
The components (Ey, Bz) satisfy a system of one homogeneous and one inhomogeneous equation,

1
c
∂tBz + ∂xEy = 0, (60)

−1
c
∂tEy − ∂xBz =

1
c

Jy, (61)
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FIG. 5. Top panels: (y, z)-independent sources in a three-dimensional space. Lower panels: their representation in (1 + 1) electromagnetism. (Ex) sector in (1 + 1)
electromagnetism: (a) the (red) uniform charged plane and (b) representation in one dimensions by a (red) point charge. (Ey , Bz) sector in (1 + 1) electromagnetism: (c)
the (blue) current plane, with the current vector parallel to z, and (d) a (blue) point source.

with source term Jy. The solutions of the above equations correspond to transverse and linearly polarized EM waves propagating along the x
axis,

1
c2 ∂

2
t Ey − ∂2

x Ey = −
1
c2 ∂tJy, (62)

1
c2 ∂

2
t Bz − ∂2

x Bz =
1
c
∂xJy. (63)

This theory, admitting wave propagation, is not the model normally adopted to discuss the quantization of EM in 1 + 1 dimensions. Note
also that this theory involves an equal number of electric and magnetic components, a feature that, under Ehrenfest’s assumption,1 would be
unique to the 3 + 1 case. A pictorial representation of the sources is given in Figs. 5(c) and 5(d).

3. (By , Ez) sector
The components (By, Ez) obey a similar pair of equations to those in the (Ey, Bz) sector,

1
c
∂tBy − ∂xEz = 0, (64)

−1
c
∂tEz + ∂xBy =

1
c

Jz , (65)

with source term Jz . In addition, in this case, the free solutions are linearly polarized waves,

1
c2 ∂

2
t Ez − ∂2

x Ez = −
1
c2 ∂tJz , (66)

1
c2 ∂

2
t By − ∂2

x By = −
1
c
∂xJz . (67)

Sectors (Ey, Bz) and (By, Ez) are connected by a π/2 rotation of fields and source around the x axis, and thus, they are described by the same
EM theory.
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4. (Bx) sector
The single component Bx satisfies a system of two homogeneous equations,

∂xBx = 0, (68)
∂tBx = 0, (69)

which make the sector trivial since the only solution is a uniform and constant magnetic field. Note that Bx is completely fixed by non-
dynamical equations and by the condition of (y, z)-independence.

B. Tensor notation
After the second descent, each block of the first descent splits up into two sub-blocks. Specifically, fields and sources separate as follows:

(70)

The elements of each sector pair [(Ex), (Bx)] and [(Ey, Bz), (By, Ez)] are related to each other by duality: this result follows from the
interplay between (3 + 1)- and (1 + 1)-duality for a rank-2 antisymmetric (3 + 1)-tensor, yielding

Grs = 1
2
(ϵrs23F23 + ϵrs32F32) = ϵrsF23 = −ϵrsBx, (71)

Gr2 = 1
2
(ϵr2s3Fs3 + ϵr23sF3s) = −ϵrsFs3, (72)

Gr3 = 1
2
(ϵr3s2Fs2 + ϵr32sF2s) = ϵrsFs2, (73)

G23 = 1
2

ϵ23rsFrs = F01 = Ex, (74)

where, henceforth, the latin indices r, s take values in {0, 1}.
In the tensor form, the equations for the (Ex) sector read

∂rFrs = 1
c

j s. (75)

The sector involves a tensor field in (1 + 1) dimensions,

(Frs) =
⎛
⎜
⎝

0 −Ex

Ex 0

⎞
⎟
⎠

, (76)

its scalar dual, G23 = Ex, and the (1 + 1)-vector source ( jr) = (cρ, Jx). The (Ey, Bz) sector is characterized by the following tensor equations:

ϵrs∂rFs2 = 0, (77)

∂rFr2 = 1
c

j 2, (78)

equivalent to systems (60) and (61). In this case, both the field (Fr2) = (−Ey,−Bz) and its dual (−Gr3) = (Bz , Ey) are vectors, while the source
j2 = Jy behaves as a scalar. This sector is related by duality to (By, Ez), characterized by
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ϵrs∂rFs3 = 0, (79)

∂rFr3 = 1
c

j 3 (80)

and characterized by a vector field (Fr3) = (−Ez , By), a vector dual (Gr2) = (−By, Ez), and a scalar source j3 = Jz as well. Finally, the tensor
form of the equations for the Bx sector reads

ϵrs∂rF23 = 0, (81)

where the scalar field F23 = −Bx corresponds to the (1 + 1) tensor dual,

(Grs) =
⎛
⎜
⎝

0 −Bx

Bx 0

⎞
⎟
⎠

. (82)

The non-dynamical nature of this last sector is confirmed by the absence of sources. The fields in all sectors formally obey wave equations in
(1 + 1) dimensions, characterized by the d’Alembert operator ∂u∂

u = c−2∂2
t − ∂2

x ,

∂u∂
uFrs = 1

c
(∂rj s − ∂sj r), (83)

∂u∂
uFr2 = 1

c
∂rj 2, (84)

∂u∂
uFr3 = 1

c
∂rj 3, (85)

∂u∂
uF23 = 0. (86)

However, as we already remarked, wave propagation actually occurs only in the sectors in which two fields are featured, while in the (Ex) and
(Bx) sectors, the above wave equations are redundant.

Remarkably, the two sectors that involve both the electric and magnetic fields, formally equivalent to each other, arise from different
first descent’s subsystem. They also have several features in common with the general EM theory in (3 + 1) dimensions: for instance, (i) the
number of electric and magnetic components is the same, (ii) the number of homogeneous and inhomogeneous equations is the same, (iii)
the tensor F and its dual G are mathematical objects of the same kind, and (iv) there is wave propagation. On the other hand, the mathematical
objects of the two remaining subsystems are highly unbalanced, as (Ex) is characterized by a tensor field, a scalar dual, and no homogeneous
equation, while (Bx) has a scalar field, a tensor dual, and no inhomogeneous equation.

C. Potentials and Lagrangian
In view of the second descent, Lagrangian (24) can be conveniently decomposed as follows:

L3+1 =(−
1
4

FrsFrs − 1
c

j rAr) + (−
1
2

Fr2Fr2 − 1
c

j 2A2)

+ (−1
2

Fr3Fr3 − 1
c

j 3A3) + (−
1
2

F23F23) (87)

= LE +LEB +LBE +LB. (88)

The dynamics in the (Ex), (Ey, Bz), and (By, Ez) sectors can be obtained from the Euler–Lagrange equations determined by the terms LE,
LEB, and LBE, respectively, combined with the assumption of field independence from y and z. The term LB = −B2

x/2, instead, is fixed to a
constant by homogeneous Maxwell’s equations. The four parts of the Lagrangian, however, are not decoupled as functions of the potentials
since A0 and A1 appear in both LEB and LBE through their derivatives ∂2Ar and ∂3Ar , respectively. As in the case of the dimensional reduction
to (2 + 1), we can choose the gauge fixing ∂2Ar = ∂3Ar = 0, which decouples the four sectors. This leaves the gauge freedom Ar → Ar + ∂r f
with f = f (t, x).
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In the decoupled case, the Euler–Lagrange equations in (1 + 1) dimensions associated with the Lagrangian density

LE(A0, A1) = −1
4
(∂rAr − ∂sAr)(∂rAs − ∂sAr) − 1

c
j rAr =

1
2

E2
x − ρΦ + 1

c
JxAx (89)

yield the dynamics [(56) and (57)] in the (Ex) sector, while the second term

LEB(A2) = −1
2
(∂rA2)(∂rA2) − 1

c
j 2A2 =

1
2
(E2

y − B2
z) +

1
c

JyAy (90)

and the third term

LBE(A3) = −1
2
(∂rA3)(∂rA3) − 1

c
j 3A3 =

1
2
(E2

z − B2
y) +

1
c

JzAz (91)

give the dynamical equations (61) and (65) of the transverse fields in the (Ey, Bz) and (By, Ez) sectors, respectively.

D. Symmetries
After the second descent, a Lorentz transformation takes the block-diagonal form,

(92)

with L ∈ O(1, 1), Q ∈ O(2). The matrices Λ form the isotropy subgroup of the yz-plane such that Λ(0, 0, y, z)⊺ = (0, 0, y′, z′)⊺.
We also realize the algebraic nature of the decompositions entailed by the block structures after the first, Eq. (33), and the second,

Eq. (70), reduction. The former are precisely the 3⊕ 3 decomposition of the antisymmetric tensor (Fμν) and the 3⊕ 1 decomposition of the
vector ( jμ) with respect to O(2, 1); see decomposition (55). The latter are the 2⊕ 2⊕ 1⊕ 1 decomposition of the antisymmetric tensor F and
the 2⊕ 1⊕ 1 decomposition of the vector j with respect to O(1, 1), according to splitting (92).

V. CONCLUSIONS AND OUTLOOK
By applying dimensional reduction, we found that classical electromagnetism in (3 + 1) dimensions splits into two different theories

in (2 + 1) dimensions if one assumes invariance of fields and sources with respect to one space direction. A further reduction, obtained by
assuming invariance with respect to a plane, yielded four independent sectors described by three different EM theories in (1 + 1) dimensions.
One of the theories in each reduction, namely, (Ex, Ey, Bz) in (2 + 1) dimensions and (Ex) in (1 + 1) dimensions, appears in low-dimensional
generalizations of Maxwell’s equations,8 and actually, their dynamics is governed by tensor equations of the same form as those in (3 + 1)
dimensions. However, these models do not predict the remaining EM theories, which are a consequence of the fact that low-dimensional
theories are still embedded in a (3 + 1)-dimensional spacetime. Future research will be dedicated to a deeper analysis of the gauge-invariance
breaking patterns in the reduction and to the role of parity symmetry (which would require the use of the D and H fields39). In addition, we
plan to investigate the role of dimensional reduction in non-Abelian theories and systems in which (classical and quantum) fields interact
with dynamical sources.
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