229 research outputs found

    Bending modes and transition criteria for a flexible fiber in viscous flows

    Get PDF
    The present paper follows our previous work in which a coupling approach of smoothed particle hydrodynamics (SPH) and element bending group (EBG) was developed for modeling the interaction of viscous incompressible flows with flexible fibers. It was also shown that a flexible object may experience drag reduction because of its reconfiguration due to fluid force on it. However, the reconfiguration of deformable bodies does not always result in drag reduction as different deformation patterns can result in different drag scales. In the present work, we studied the bending modes of a flexible fiber in viscous flows using the presented SPH and EBG coupling approach. The flexible fiber is immersed in a fluid and is tethered at its center point, while the two ends of the fiber are free to move. We showed that the fiber undergoes four different bending modes: stable U-shape, slight swing, violent flapping, and stable closure modes. We found there is a transition criterion for the flexible fiber from slight swing, suddenly to violent flapping. We defined a bending number to characterize the bending dynamics of the interaction of flexible fiber with viscous fluid and revealed that this bending number is relevant to the non-dimensional fiber length. We also identified the critical bending number from slight swing mode to violent flapping mode

    Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    Get PDF
    Positive plant diversity-productivity relationships have been reported for experimental semi-natural grasslands (Cardinale et al. 2006; Hector et al. 1999; Tilman et al. 1996) as well as temporary agricultural grasslands (Frankow-Lindberg et al. 2009; Kirwan et al. 2007; Nyfeler et al. 2009; Picasso et al. 2008). Generally, these relationships are explained, on the one hand, by niche differentiation and facilitation (Hector et al. 2002; Tilman et al. 2002) and, on the other hand, by greater probability of including a highly productive plant species in high diversity plots (Huston 1997). Both explanations accept that diversity is significant because species differ in characteristics, such as root architecture, nutrient acquisition and water use efficiency, to name a few, resulting in composition and diversity being important for improved productivity and resource use (Naeem et al. 1994; Tilman et al. 2002). Plant diversity is generally low in temporary agricultural grasslands grown for ruminant fodder production. Grass in pure stands is common, but requires high nitrogen (N) inputs. In terms of N input, two-species grass-legume mixtures are more sustainable than grass in pure stands and consequently dominate low N input grasslands (Crews and Peoples 2004; Nyfeler et al. 2009; Nyfeler et al. 2011). In temperate grasslands, N is often the limiting factor for productivity (Whitehead 1995). Plant available soil N is generally concentrated in the upper soil layers, but may leach to deeper layers, especially in grasslands that include legumes (Scherer-Lorenzen et al. 2003) and under conditions with surplus precipitation (Thorup-Kristensen 2006). To improve soil N use efficiency in temporary grasslands, we propose the addition of deep-rooting plant species to a mixture of perennial ryegrass and white clover, which are the most widespread forage plant species in temporary grasslands in a temperate climate (Moore 2003). Perennial ryegrass and white clover possess relatively shallow root systems (Kutschera and Lichtenegger 1982; Kutschera and Lichtenegger 1992) with effective rooting depths of <0.7 m on a silt loamy site (Pollock and Mead 2008). Grassland species, such as lucerne and chicory, grow their tap-roots into deep soil layers and exploit soil nutrients and water in soil layers that the commonly grown shallow-rooting grassland species cannot reach (Braun et al. 2010; Skinner 2008). Chicory grown as a catch crop after barley reduced the inorganic soil N down to 2.5 m depth during the growing season, while perennial ryegrass affected the inorganic soil N only down to 1 m depth (Thorup-Kristensen 2006). Further, on a Wakanui silt loam in New Zealand chicory extracted water down to 1.9 m and lucerne down to 2.3 m soil depth, which resulted in greater herbage yields compared with a perennial ryegrass-white clover mixture, especially for dryland plots (Brown et al. 2005). There is little information on both the ability of deep- and shallow-rooting grassland species to access soil N from different vertical soil layers and the relation of soil N-access and herbage yield in temporary agricultural grasslands. Therefore, the objective of the present work was to test the hypotheses 1) that a mixture comprising both shallow- and deep-rooting plant species has greater herbage yields than a shallow-rooting binary mixture and pure stands, 2) that deep-rooting plant species (chicory and lucerne) are superior in accessing soil N from 1.2 m soil depth compared with shallow-rooting plant species, 3) that shallow-rooting plant species (perennial ryegrass and white clover) are superior in accessing soil N from 0.4 m soil depth compared with deep-rooting plant species, 4) that a mixture of deep- and shallow-rooting plant species has greater access to soil N from three soil layers compared with a shallow-rooting two-species mixture and that 5) the leguminous grassland plants, lucerne and white clover, have a strong impact on grassland N acquisition, because of their ability to derive N from the soil and the atmosphere

    Underestimated role of legume roots for soil N fertility

    Get PDF
    Research ArticleNitrogen (N) is a major fertilizing element for plants. The distribution of N in legumes is influencing the efficiency of the next crop. Nitrogen storage in legumes is actually estimated by N fixation in shoots, whereas there is little knowledge on the contribution of roots and nodules to legume N and soil N. Here, we studied the contribution of roots and nodules of grain and pasture legumes to plant N and soil N in Mediterranean fields. Experiments were run under rainfed conditions for a 2-year period in three regions of Portugal. Entire plants including top plant and visible roots and nodules were sampled at the end of the growing seasons for grain legumes, sweet and yellow lupine, and over two harvests in case of pastures. N2 fixation was measured for grain legumes and pasture legumes using 15N tracing. Our results show that aboveground N concentration did not vary among legumes, but differed in the belowground tissues. Field studies show that 7–11%of total legume N was associated with roots and nodules. Data also show an allocation of 11– 14 kg N fixed t−1 belowground dry matter in indeterminate legumes, which represents half the amount of total aboveground plant. This finding demonstrates that investigation relying only on shoot Nunderestimates the role of legumes for soil N fertilityinfo:eu-repo/semantics/publishedVersio

    Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    Get PDF
    Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) were leaf-labelled with 15N enriched urea during one growing season. N transfer to grasses (Lolium perenne L. and xfestulolium), white clover, red clover, lucerne, birdsfoot trefoil (Lotus corniculatus L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.), salad burnet (Sanguisorba minor L.)and caraway (Carum carvi L.) was assessed. Neighbouring plants contained greater amounts of N derived from white clover (4.8 gm-2) compared with red clover (2.2 gm-2) and lucerne (1.1 gm-2). Grasses having fibrous roots received greater amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland

    MODELING OF CONTACT ANGLES AND WETTING EFFECTS WITH PARTICLE METHODS

    Get PDF
    The physics of fluid-fluid-solid contact line dynamics and wetting behaviors are closely related to the inter-particle and intra-molecular hydrodynamic interactions of the concerned multiple phase system. Investigation of surface tension, contact angle, and wetting behavior using molecular dynamics (MD) is practical only on extremely small time scales (nanoseconds) and length scales (nanometers) even if the most advanced high-performance computers are used. In this article we introduce two particle methods, which are smoothed particle hydrodynamics (SPH) and dissipative particle dynamics (DPD), for multiphase fluid motion on continuum scale and meso-scale (between the molecular and continuum scales). In both methods, the interaction of fluid particles and solid particles can be used to study fluid-fluid-solid contact line dynamics with different wetting behaviors. The interaction strengths between fluid particles and between fluid and wall particles are closely related to the wetting behavior and the contact angles. The effectiveness of SPH and DPD in modeling contact line dynamics and wetting behavior has been demonstrated by a number of numerical examples that show the complexity of different multiphase flow behaviors

    MODELING OF CONTACT ANGLES AND WETTING EFFECTS WITH PARTICLE METHODS

    Get PDF
    The physics of fluid-fluid-solid contact line dynamics and wetting behaviors are closely related to the inter-particle and intra-molecular hydrodynamic interactions of the concerned multiple phase system. Investigation of surface tension, contact angle, and wetting behavior using molecular dynamics (MD) is practical only on extremely small time scales (nanoseconds) and length scales (nanometers) even if the most advanced high-performance computers are used. In this article we introduce two particle methods, which are smoothed particle hydrodynamics (SPH) and dissipative particle dynamics (DPD), for multiphase fluid motion on continuum scale and meso-scale (between the molecular and continuum scales). In both methods, the interaction of fluid particles and solid particles can be used to study fluid-fluid-solid contact line dynamics with different wetting behaviors. The interaction strengths between fluid particles and between fluid and wall particles are closely related to the wetting behavior and the contact angles. The effectiveness of SPH and DPD in modeling contact line dynamics and wetting behavior has been demonstrated by a number of numerical examples that show the complexity of different multiphase flow behaviors

    Uncovering treatment burden as a key concept for stroke care: a systematic review of qualitative research

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Patients with chronic disease may experience complicated management plans requiring significant personal investment. This has been termed ‘treatment burden’ and has been associated with unfavourable outcomes. The aim of this systematic review is to examine the qualitative literature on treatment burden in stroke from the patient perspective.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods and findings&lt;/b&gt; The search strategy centred on: stroke, treatment burden, patient experience, and qualitative methods. We searched: Scopus, CINAHL, Embase, Medline, and PsycINFO. We tracked references, footnotes, and citations. Restrictions included: English language, date of publication January 2000 until February 2013. Two reviewers independently carried out the following: paper screening, data extraction, and data analysis. Data were analysed using framework synthesis, as informed by Normalization Process Theory. Sixty-nine papers were included. Treatment burden includes: (1) making sense of stroke management and planning care, (2) interacting with others, (3) enacting management strategies, and (4) reflecting on management. Health care is fragmented, with poor communication between patient and health care providers. Patients report inadequate information provision. Inpatient care is unsatisfactory, with a perceived lack of empathy from professionals and a shortage of stimulating activities on the ward. Discharge services are poorly coordinated, and accessing health and social care in the community is difficult. The study has potential limitations because it was restricted to studies published in English only and data from low-income countries were scarce.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; Stroke management is extremely demanding for patients, and treatment burden is influenced by micro and macro organisation of health services. Knowledge deficits mean patients are ill equipped to organise their care and develop coping strategies, making adherence less likely. There is a need to transform the approach to care provision so that services are configured to prioritise patient needs rather than those of health care systems

    A single evolutionary innovation drives the deep evolution of symbiotic N<sub>2</sub>-fixation in angiosperms

    Get PDF
    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships
    corecore