31 research outputs found

    Role of APOBEC3F Gene Variation in HIV-1 Disease Progression and Pneumocystis Pneumonia

    Get PDF
    Human APOBEC3 cytidine deaminases are intrinsic resistance factors to HIV-1. However, HIV-1 encodes a viral infectivity factor (Vif) that degrades APOBEC3 proteins. In vitro APO-BEC3F (A3F) anti-HIV-1 activity is weaker than A3G but is partially resistant to Vif degradation unlike A3G. It is unknown whether A3F protein affects HIV-1 disease in vivo. To assess the effect of A3F gene on host susceptibility to HIV-acquisition and disease progression, we performed a genetic association study in six well-characterized HIV-1 natural cohorts. A common six-Single Nucleotide Polymorphism (SNP) haplotype of A3F tagged by a codon-changing variant (p. I231V, with allele (V) frequency of 48% in European Americans) was associated with significantly lower set-point viral load and slower rate of progression to AIDS (Relative Hazards (RH) = 0.71, 95% CI: 0.56, 0.91) and delayed development of pneumocystis pneumonia (PCP) (RH = 0.53, 95% CI: 0.37-0.76). A validation study in the International Collaboration for the Genomics of HIV (ICGH) showed a consistent association with lower set-point viral load. An in vitro assay revealed that the A3F I231V variant may influence Vif mediated A3F degradation. Our results provide genetic epidemiological evidence that A3F modulates HIV-1/AIDS disease progression

    Identification of Siglec-1 null individuals infected with HIV-1

    Get PDF
    Siglec-1/CD169 is a myeloid-cell surface receptor critical for HIV-1 capture and infection of bystander target cells. To dissect the role of SIGLEC1 in natura, we scan a large population genetic database and identify a loss-of-function variant (Glu88Ter) that is found in ∼1% of healthy people. Exome analysis and direct genotyping of 4,233 HIV-1-infected individuals reveals two Glu88Ter homozygous and 97 heterozygous subjects, allowing the analysis of ex vivo and in vivo consequences of SIGLEC1 loss-of-function. Cells from these individuals are functionally null or haploinsufficient for Siglec-1 activity in HIV-1 capture and trans-infection ex vivo. However, Siglec-1 protein truncation does not have a measurable impact on HIV-1 acquisition or AIDS outcomes in vivo. This result contrasts with the known in vitro functional role of Siglec-1 in HIV-1 trans-infection. Thus, it provides evidence that the classical HIV-1 infectious routes may compensate for the lack of Siglec-1 in fuelling HIV-1 dissemination within infected individuals

    Effect of Statin Use on Inflammation and Immune Activation Biomarkers in HIV-Infected Persons on Effective Antiretroviral Therapy.

    No full text
    Immune activation and inflammation are hallmarks of chronic HIV infection and are etiologically linked to major causes of morbidity and mortality among HIV-infected persons, including coronary artery disease and cancer. Systemic immune activation is dampened, but not resolved, with use of combination antiretroviral therapy (cART). Statins are cardioprotective drugs that also appear to have immunomodulatory and anti-inflammatory properties. We sought to understand the association between statin use, cART, and levels of circulating immune markers in a longitudinal cohort study. From 2004 to 2009, statin use was ascertained in male participants of the Multicenter AIDS Cohort Study (MACS) using interviewer-administered questionnaires. Twenty-four circulating markers of immune activation and inflammation were measured in archived serial samples from a subset of cohort members using multiplex assays. Propensity-adjusted generalized gamma models were used to compare biomarkers' distributions by statin use, and multivariable linear regression models were used to assess the effect of initiating statin on these biomarkers. Overall, 1,031 cART-exposed individuals with HIV infection were included in this study. Statin use was reported by 31.5% of cART-exposed participants. Compared to nonstatin users on cART, statin users on cART had lower levels of IP-10, IL-10, and IL-12p70, and the effect of statin use was decreased in participants using lipophilic statins (atorvastatin, simvastatin, fluvastatin, or lovastatin); these results were statistically significant (p < .05). Among cART users not on aspirin, starting statins decreased levels of high sensitivity c-reactive protein (hsCRP), IL-12p70, and IL-6. Statin therapy is associated with reduced levels of certain biomarkers of immune activation and inflammation in cART users, which may contribute to a lower burden of disease

    Temporal Stability of Serum Concentrations of Cytokines and Soluble Receptors Measured Across Two Years in Low-Risk HIV-Seronegative Men

    No full text
    BackgroundProspective cohort studies often quantify serum immune biomarkers at a single time point to determine risk of cancer and other chronic diseases that develop years later. Estimates of the within-person temporal stability of serum markers partly assess the utility of single biomarker measurements and may have important implications for the design of prospective studies of chronic disease risk.MethodsUsing archived sera collected from 200 HIV-seronegative men at three visits spaced over approximately 2 years, concentrations of 14 biomarkers (ApoA1, sCD14, sgp130, sIL-6R, sIL-2Rα, sTNFR2, BAFF/BLyS, CXCL13, IFN-γ, interleukin [IL]-1β, IL-6, IL-8, IL-10, and TNF-α) were measured in a single laboratory. Age- and ethnicity-adjusted intraclass correlation coefficients (ICC) were calculated for each biomarker, and mixed linear regression models were used to examine the influence of age, ethnicity, season, and study site on biomarker concentrations.ResultsAcross all three study visits, most biomarkers had ICC values indicating fair to excellent within-person stability. ApoA1 (ICC = 0.88) and TNF-α (ICC = 0.87) showed the greatest stability; the ICC for IL-8 (ICC = 0.33) was remarkably less stable. The ICCs were similar when calculated between pairs of consecutive visits. The covariables did not influence biomarker levels or their temporal stability. All biomarkers showed moderate to strong pairwise correlations across visits.ConclusionsSerum concentrations of most evaluated immune biomarkers displayed acceptable to excellent within-person temporal reliability over a 2-year period. Further investigation may be required to clarify the stability of IL-8.ImpactThese findings lend support to using these serologic immune biomarkers in prospective studies investigating associations with chronic diseases

    The Association Between APOL1 Risk Alleles and Longitudinal Kidney Function Differs by HIV Viral Suppression Status

    No full text
    BackgroundExisting data suggest that human immunodeficiency virus (HIV)-infected African Americans carrying 2 copies of the APOL1 risk alleles have greater risk of kidney disease than noncarriers. We sought to determine whether HIV RNA suppression mitigates APOL1-related kidney function decline among African Americans enrolled in the Multicenter AIDS Cohort Study.MethodsWe genotyped HIV-infected men for the G1 and G2 risk alleles and ancestry informative markers. Mixed-effects models were used to estimate the annual rate of estimated glomerular filtration rate (eGFR) decline, comparing men carrying 2 (high-risk) vs 0-1 risk allele (low-risk). Effect modification by HIV suppression status (defined as HIV type 1 RNA level <400 copies/mL for >90% of follow-up time) was evaluated using interaction terms and stratified analyses.ResultsOf the 333 African American men included in this study, 54 (16%) carried the APOL1 high-risk genotype. Among HIV-infected men with unsuppressed viral loads, those with the high-risk genotype had a 2.42 mL/minute/1.73 m(2) (95% confidence interval [CI], -3.52 to -1.32) faster annual eGFR decline than men with the low-risk genotype. This association was independent of age, comorbid conditions, baseline eGFR, ancestry, and HIV-related factors. In contrast, the rate of decline was similar by APOL1 genotype among men with sustained viral suppression (-0.16 mL/minute/1.73 m(2)/year; 95% CI, -.59 to .27; P for interaction <.001).ConclusionsUnsuppressed HIV-infected African Americans with the APOL1 high-risk genotype experience an accelerated rate of kidney function decline; HIV suppression with antiretroviral therapy may reduce these deleterious renal effects

    Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection

    No full text
    <div><p>Human APOBEC3 proteins are cytidine deaminases that contribute broadly to innate immunity through the control of exogenous retrovirus replication and endogenous retroelement retrotransposition. As an intrinsic antiretroviral defense mechanism, APOBEC3 proteins induce extensive guanosine-to-adenosine (G-to-A) mutagenesis and inhibit synthesis of nascent human immunodeficiency virus-type 1 (HIV-1) cDNA. Human APOBEC3 proteins have additionally been proposed to induce infrequent, potentially non-lethal G-to-A mutations that make subtle contributions to sequence diversification of the viral genome and adaptation though acquisition of beneficial mutations. Using single-cycle HIV-1 infections in culture and highly parallel DNA sequencing, we defined trinucleotide contexts of the edited sites for APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H. We then compared these APOBEC3 editing contexts with the patterns of G-to-A mutations in HIV-1 DNA in cells obtained sequentially from ten patients with primary HIV-1 infection. Viral substitutions were highest in the preferred trinucleotide contexts of the edited sites for the APOBEC3 deaminases. Consistent with the effects of immune selection, amino acid changes accumulated at the APOBEC3 editing contexts located within human leukocyte antigen (HLA)-appropriate epitopes that are known or predicted to enable peptide binding. Thus, APOBEC3 activity may induce mutations that influence the genetic diversity and adaptation of the HIV-1 population in natural infection.</p></div
    corecore