23 research outputs found

    ISPIDER Central: an integrated database web-server for proteomics

    Get PDF
    Despite the growing volumes of proteomic data, integration of the underlying results remains problematic owing to differences in formats, data captured, protein accessions and services available from the individual repositories. To address this, we present the ISPIDER Central Proteomic Database search (http://www.ispider.manchester.ac.uk/cgi-bin/ProteomicSearch.pl), an integration service offering novel search capabilities over leading, mature, proteomic repositories including PRoteomics IDEntifications database (PRIDE), PepSeeker, PeptideAtlas and the Global Proteome Machine. It enables users to search for proteins and peptides that have been characterised in mass spectrometry-based proteomics experiments from different groups, stored in different databases, and view the collated results with specialist viewers/clients. In order to overcome limitations imposed by the great variability in protein accessions used by individual laboratories, the European Bioinformatics Institute's Protein Identifier Cross-Reference (PICR) service is used to resolve accessions from different sequence repositories. Custom-built clients allow users to view peptide/protein identifications in different contexts from multiple experiments and repositories, as well as integration with the Dasty2 client supporting any annotations available from Distributed Annotation System servers. Further information on the protein hits may also be added via external web services able to take a protein as input. This web server offers the first truly integrated access to proteomics repositories and provides a unique service to biologists interested in mass spectrometry-based proteomics

    Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 mu m

    Get PDF
    Epitaxial single-crystal chemical-vapor-deposited diamond with (100) crystal orientation is obtained from Element Six (Ascot, United Kingdom) and Apollo Diamond (Boston, Massachusetts). Both companies supply 5 x 5-mm squares with thicknesses of 0.35 to 1.74 mm. Element Six also provides disks with a state of the art diameter of 10 to 11 mm and a thickness of 1.0 mm. The absorption coefficient measured by laser calorimetry at 1.064 mu m is 0.003 cm(-1) for squares from Element Six and 0.07 cm(-1) for squares from Apollo. One Apollo specimen has an absorption coefficient near those of the Element Six material. Absorption coefficients of Element Six disks are 0.008 to 0.03 cm(-1). Each square specimen can be rotated between orientations that produce minimum or maximum loss of polarization of a 1.064-mu m laser beam transmitted through the diamond. Minimum loss is in the range 0 to 11% (mean = 5%) and maximum loss is 8 to 27% (mean= 17%). Element Six disks produce a loss of polarization in the range 0 to 4%, depending on the angle of rotation of the disk. Part of the 0.04 to 0.6% total integrated optical scatter in the forward hemisphere at 1.064 mu m can be attributed to surface roughness

    The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease

    Get PDF
    Fil: El-Sayed, Najib M. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Myler, Peter J. Seattle Biomedical Research Institute; Estados Unidos.Fil: Bartholomeu, Daniella C. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Nilsson, Daniel. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Aggarwal, Gautam. Seattle Biomedical Research Institute; Estados Unidos.Fil: Tran, Anh-Nhi. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Ghedin, Elodie. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Worthey, Elizabeth A. Seattle Biomedical Research Institute; Estados Unidos.Fil: Delcher, Arthur L. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Blandin, Gaëlle. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Westenberger, Scott J. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Caler, Elisabet. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Cerqueira, Gustavo C. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Haas, Carole Branched Brian. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Anupama, Atashi. Seattle Biomedical Research Institute; Estados Unidos.Fil: Arner, Erik. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Åslund, Lena. Uppsala University. Department of Genetics and Pathology; Suecia.Fil: Attipoe, Philip. Seattle Biomedical Research Institute; Estados Unidos.Fil: Bontempi, Esteban. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Bringaud, Frédéric. Université Victor Segalen Bordeaux II. Laboratoire de Génomique Fonctionnelle des Trypanosomatides; Francia.Fil: Burton, Peter. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Cadag, Eithon. Seattle Biomedical Research Institute; Estados Unidos.Fil: Campbell, David A. University of California. Department of Microbiology; Estados Unidos.Fil: Carrington, Mark. University of Cambridge. Department of Biochemistry; Reino Unido.Fil: Crabtree, Jonathan. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Darban, Hamid. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Silveira, Jose Franco da. Universidade Federal de Sao Paulo. Departamento de Microbiologia; Brasil.Fil: Jong, Pieter de. Children’s Hospital Oakland Research Institute. BACPAC Resources; Estados Unidos.Fil: Edwards, Kimberly. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Englund, Paul T. Johns Hopkins University School of Medicine. Department of Biological Chemistry; Estados Unidos.Fil: Fazelina, Gholam. Seattle Biomedical Research Institute; Estados Unidos.Fil: Feldblyum, Tamara. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Ferella, Marcela. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Frasch, Alberto Carlos. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina.Fil: Gull, Keith. University of Oxford. Sir William Dunn School of Pathology; Reino Unido.Fil: Horn, David. London School of Hygiene and Tropical Medicine; Reino Unido.Fil: Hou, Lihua. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Huang, Yiting. Seattle Biomedical Research Institute; Estados Unidos.Fil: Kindlund, Ellen. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Klingbeil, Michele. University of Massachusetts. Department of Microbiology; Estados Unidos.Fil: Kluge, Sindy. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Koo, Hean. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Lacerda, Daniela. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Levin, Mariano J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CYTED project). Laboratorio de Biología Molecular de la Enfermedad de Chagas; Argentina.Fil: Lorenzi, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CYTED project). Laboratorio de Biología Molecular de la Enfermedad de Chagas; Argentina.Fil: Louie, Tin. Seattle Biomedical Research Institute; Estados Unidos.Fil: Machado, Carlos Renato. Universidade Federal de Minas Gerais. Departamento de Bioquímica e Imunologia; Brasil.Fil: McCulloch, Richard. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: McKenna, Alan. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Mizuno, Yumi. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Mottram, Jeremy C. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Nelson, Siri. Seattle Biomedical Research Institute; Estados Unidos.Fil: Ochaya, Stephen. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Osoegawa, Kazutoyo. Children’s Hospital Oakland Research Institute. BACPAC Resources; Estados Unidos.Fil: Pai, Grace. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Parsons, Marilyn. Seattle Biomedical Research Institute; Estados Unidos.Fil: Pentony, Martin. Seattle Biomedical Research Institute; Estados Unidos.Fil: Pettersson, Ulf. Uppsala University. Department of Genetics and Pathology; Suecia.Fil: Pop, Mihai. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Ramirez, Jose Luis. Universidad Central de Venezuela. Instituto de Biología Experimental; Venezuela.Fil: Rinta, Joel. Seattle Biomedical Research Institute; Estados Unidos.Fil: Robertson, Laura. Seattle Biomedical Research Institute; Estados Unidos.Fil: Salzberg, Steven L. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Sanchez, Daniel O. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina.Fil: Seyler, Amber. Seattle Biomedical Research Institute; Estados Unidos.Fil: Sharma, Reuben. University of Cambridge. Department of Biochemistry; Reino Unido.Fil: Shetty, Jyoti. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Simpson, Anjana J. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Sisk, Ellen. Seattle Biomedical Research Institute; Estados Unidos.Fil: Tammi, Martti T. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Tarleton, Rick. University of Georgia. Center for Tropical and Emerging Global Diseases; Estados Unidos.Fil: Teixeira, Santuza. Universidade Federal de Minas Gerais. Departamento de Bioquímica e Imunologia; Brasil.Fil: Aken, Susan Van. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Vogt, Christy. Seattle Biomedical Research Institute; Estados Unidos.Fil: Ward, Pauline N. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Wickstead, Bill. University of Oxford. Sir William Dunn School of Pathology; Reino Unido.Fil: Wortman, Jennifer. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: White, Owen. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Fraser, Claire M. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Stuart, Kenneth D. Seattle Biomedical Research Institute; Estados Unidos.Fil: Andersson, Björn. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention

    The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease

    Get PDF
    Fil: El-Sayed, Najib M. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Myler, Peter J. Seattle Biomedical Research Institute; Estados Unidos.Fil: Bartholomeu, Daniella C. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Nilsson, Daniel. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Aggarwal, Gautam. Seattle Biomedical Research Institute; Estados Unidos.Fil: Tran, Anh-Nhi. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Ghedin, Elodie. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Worthey, Elizabeth A. Seattle Biomedical Research Institute; Estados Unidos.Fil: Delcher, Arthur L. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Blandin, Gaëlle. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Westenberger, Scott J. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Caler, Elisabet. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Cerqueira, Gustavo C. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Haas, Carole Branched Brian. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Anupama, Atashi. Seattle Biomedical Research Institute; Estados Unidos.Fil: Arner, Erik. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Åslund, Lena. Uppsala University. Department of Genetics and Pathology; Suecia.Fil: Attipoe, Philip. Seattle Biomedical Research Institute; Estados Unidos.Fil: Bontempi, Esteban. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Bringaud, Frédéric. Université Victor Segalen Bordeaux II. Laboratoire de Génomique Fonctionnelle des Trypanosomatides; Francia.Fil: Burton, Peter. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Cadag, Eithon. Seattle Biomedical Research Institute; Estados Unidos.Fil: Campbell, David A. University of California. Department of Microbiology; Estados Unidos.Fil: Carrington, Mark. University of Cambridge. Department of Biochemistry; Reino Unido.Fil: Crabtree, Jonathan. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Darban, Hamid. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Silveira, Jose Franco da. Universidade Federal de Sao Paulo. Departamento de Microbiologia; Brasil.Fil: Jong, Pieter de. Children’s Hospital Oakland Research Institute. BACPAC Resources; Estados Unidos.Fil: Edwards, Kimberly. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Englund, Paul T. Johns Hopkins University School of Medicine. Department of Biological Chemistry; Estados Unidos.Fil: Fazelina, Gholam. Seattle Biomedical Research Institute; Estados Unidos.Fil: Feldblyum, Tamara. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Ferella, Marcela. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Frasch, Alberto Carlos. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina.Fil: Gull, Keith. University of Oxford. Sir William Dunn School of Pathology; Reino Unido.Fil: Horn, David. London School of Hygiene and Tropical Medicine; Reino Unido.Fil: Hou, Lihua. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Huang, Yiting. Seattle Biomedical Research Institute; Estados Unidos.Fil: Kindlund, Ellen. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Klingbeil, Michele. University of Massachusetts. Department of Microbiology; Estados Unidos.Fil: Kluge, Sindy. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Koo, Hean. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Lacerda, Daniela. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Levin, Mariano J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CYTED project). Laboratorio de Biología Molecular de la Enfermedad de Chagas; Argentina.Fil: Lorenzi, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CYTED project). Laboratorio de Biología Molecular de la Enfermedad de Chagas; Argentina.Fil: Louie, Tin. Seattle Biomedical Research Institute; Estados Unidos.Fil: Machado, Carlos Renato. Universidade Federal de Minas Gerais. Departamento de Bioquímica e Imunologia; Brasil.Fil: McCulloch, Richard. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: McKenna, Alan. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Mizuno, Yumi. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Mottram, Jeremy C. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Nelson, Siri. Seattle Biomedical Research Institute; Estados Unidos.Fil: Ochaya, Stephen. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Osoegawa, Kazutoyo. Children’s Hospital Oakland Research Institute. BACPAC Resources; Estados Unidos.Fil: Pai, Grace. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Parsons, Marilyn. Seattle Biomedical Research Institute; Estados Unidos.Fil: Pentony, Martin. Seattle Biomedical Research Institute; Estados Unidos.Fil: Pettersson, Ulf. Uppsala University. Department of Genetics and Pathology; Suecia.Fil: Pop, Mihai. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Ramirez, Jose Luis. Universidad Central de Venezuela. Instituto de Biología Experimental; Venezuela.Fil: Rinta, Joel. Seattle Biomedical Research Institute; Estados Unidos.Fil: Robertson, Laura. Seattle Biomedical Research Institute; Estados Unidos.Fil: Salzberg, Steven L. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Sanchez, Daniel O. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina.Fil: Seyler, Amber. Seattle Biomedical Research Institute; Estados Unidos.Fil: Sharma, Reuben. University of Cambridge. Department of Biochemistry; Reino Unido.Fil: Shetty, Jyoti. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Simpson, Anjana J. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Sisk, Ellen. Seattle Biomedical Research Institute; Estados Unidos.Fil: Tammi, Martti T. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Tarleton, Rick. University of Georgia. Center for Tropical and Emerging Global Diseases; Estados Unidos.Fil: Teixeira, Santuza. Universidade Federal de Minas Gerais. Departamento de Bioquímica e Imunologia; Brasil.Fil: Aken, Susan Van. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Vogt, Christy. Seattle Biomedical Research Institute; Estados Unidos.Fil: Ward, Pauline N. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Wickstead, Bill. University of Oxford. Sir William Dunn School of Pathology; Reino Unido.Fil: Wortman, Jennifer. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: White, Owen. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Fraser, Claire M. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Stuart, Kenneth D. Seattle Biomedical Research Institute; Estados Unidos.Fil: Andersson, Björn. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention

    The genome of the kinetoplastid parasite, Leishmania major

    Get PDF
    Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II–directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gen
    corecore