4,902 research outputs found

    Degeneracy measures for the algebraic classification of numerical spacetimes

    Full text link
    We study the issue of algebraic classification of the Weyl curvature tensor, with a particular focus on numerical relativity simulations. The spacetimes of interest in this context, binary black hole mergers, and the ringdowns that follow them, present subtleties in that they are generically, strictly speaking, Type I, but in many regions approximately, in some sense, Type D. To provide meaning to any claims of "approximate" Petrov class, one must define a measure of degeneracy on the space of null rays at a point. We will investigate such a measure, used recently to argue that certain binary black hole merger simulations ring down to the Kerr geometry, after hanging up for some time in Petrov Type II. In particular, we argue that this hangup in Petrov Type II is an artefact of the particular measure being used, and that a geometrically better-motivated measure shows a black hole merger produced by our group settling directly to Petrov Type D.Comment: 14 pages, 7 figures. Version 2 adds two references

    The Seeds of Cosmic structure as a door to New Physics

    Full text link
    There is something missing in our understanding of the origin of the seeds of Cosmic Structuture. The fact that the fluctuation spectrum can be extracted from the inflationary scenario through an analysis that involves quantum field theory in curved space-time, and that it coincides with the observational data has lead to a certain complacency in the community, which prevents the critical analysis of the obscure spots in the derivation. The point is that the inhomogeneity and anisotropy of our universe seem to emerge from an exactly homogeneous and isotropic initial state through processes that do not break those symmetries. This article gives a brief recount of the problems faced by the arguments based on established physics, which comprise the point of view held by a large majority of researchers in the field. The conclusion is that we need some new physics to be able to fully address the problem. The article then exposes one avenue that has been used to address the central issue and elaborates on the degree to which, the new approach makes different predictions from the standard analyses. The approach is inspired on Penrose's proposals that Quantum Gravity might lead to a real, dynamical collapse of the wave function, a process that we argue has the properties needed to extract us from the theoretical impasse described above.Comment: Prepared for the proceedings of the conference NEBXII " Recent Developments in Gravity", Napfio Grece June 2006. LateX, 15 page

    Off-Diagonal Long-Range Order: Meissner Effect and Flux Quantization

    Full text link
    There has been a proof by Sewell that the hypothesis of off-diagonal long-range order in the reduced density matrix ρ2\rho _2 implies the Meissner effect. We present in this note an elementary and straightforward proof that not only the Meissner effect but also the property of magnetic flux quantization follows from the hypothesis. It is explicitly shown that the two phenomena are closely related, and phase coherence is the origin for both.Comment: 11 pages, Latex fil

    Dynamics and instability of false vacuum bubbles

    Full text link
    This paper examines the classical dynamics of false vacuum regions embedded in surrounding regions of true vacuum, in the thin-wall limit. The dynamics of all generally relativistically allowed solutions -- most but not all of which have been previously studied -- are derived, enumerated, and interpreted. We comment on the relation of these solutions to possible mechanisms whereby inflating regions may be spawned from non-inflating ones. We then calculate the dynamics of first order deviations from spherical symmetry, finding that many solutions are unstable to such aspherical perturbations. The parameter space in which the perturbations on bound solutions inevitably become nonlinear is mapped. This instability has consequences for the Farhi-Guth-Guven mechanism for baby universe production via quantum tunneling.Comment: 16 PRD-style pages including 11 embedded figures; accepted by PRD. Revised version includes new solution, discussion of 'thermal activation', added reference, fixed typo

    Twistors, special relativity, conformal symmetry and minimal coupling - a review

    Full text link
    An approach to special relativistic dynamics using the language of spinors and twistors is presented. Exploiting the natural conformally invariant symplectic structure of the twistor space, a model is constructed which describes a relativistic massive, spinning and charged particle, minimally coupled to an external electro-magnetic field. On the two-twistor phase space the relativistic Hamiltonian dynamics is generated by a Poincare scalar function obtained from the classical limit (appropriately defined by us) of the second order, to an external electro-magnetic field minimally coupled, Dirac operator. In the so defined relativistic classical limit there are no Grassman variables. Besides, the arising equation that describes dynamics of the relativistic spin differs significantly from the so called Thomas Bergman Michel Telegdi equation.Comment: 39 pages, no figures, few erronous statements (not affecting anything else in the papper) on page 23 delete

    Relations between Entropies Produced in Nondeterministic Thermodynamic Processes

    Get PDF
    Landauer's erasure principle is generalized to nondeterministic processes on systems having an arbitrary number of non-symmetrical logical states. The condition that the process is applied in the same way, irrespective of the initial logical state, imposes some restrictions on the individual heat exchanges associated with each possible transition. The complete set of such restrictions are derived by a statistical analysis of the phase-space flow induced by the process. Landauer's erasure principle can be derived from and is a special case of these.Comment: 12 pages with one figure; a final major revision in presentation; physical assumptions are clarified no

    Spin-Raising Operators and Spin-3/2 Potentials in Quantum Cosmology

    Get PDF
    Local boundary conditions involving field strengths and the normal to the boundary, originally studied in anti-de Sitter space-time, have been recently considered in one-loop quantum cosmology. This paper derives the conditions under which spin-raising operators preserve these local boundary conditions on a 3-sphere for fields of spin 0,1/2,1,3/2 and 2. Moreover, the two-component spinor analysis of the four potentials of the totally symmetric and independent field strengths for spin 3/2 is applied to the case of a 3-sphere boundary. It is shown that such boundary conditions can only be imposed in a flat Euclidean background, for which the gauge freedom in the choice of the potentials remains.Comment: 13 pages, plain-tex, recently appearing in Classical and Quantum Gravity, volume 11, April 1994, pages 897-903. Apologies for the delay in circulating the file, due to technical problems now fixe

    Noncommutativity and Discrete Physics

    Full text link
    The purpose of this paper is to present an introduction to a point of view for discrete foundations of physics. In taking a discrete stance, we find that the initial expression of physical theory must occur in a context of noncommutative algebra and noncommutative vector analysis. In this way the formalism of quantum mechanics occurs first, but not necessarily with the usual interpretations. The basis for this work is a non-commutative discrete calculus and the observation that it takes one tick of the discrete clock to measure momentum.Comment: LaTeX, 23 pages, no figure

    Thermal gravity, black holes and cosmological entropy

    Full text link
    Taking seriously the interpretation of black hole entropy as the logarithm of the number of microstates, we argue that thermal gravitons may undergo a phase transition to a kind of black hole condensate. The phase transition proceeds via nucleation of black holes at a rate governed by a saddlepoint configuration whose free energy is of order the inverse temperature in Planck units. Whether the universe remains in a low entropy state as opposed to the high entropy black hole condensate depends sensitively on its thermal history. Our results may clarify an old observation of Penrose regarding the very low entropy state of the universe.Comment: 5 pages, 2 figures, RevTex. v4: to appear in Phys. Rev.
    corecore