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Abstract. Local boundary conditions involving field strengths and the normal to the

boundary, originally studied in anti-de Sitter space-time, have been recently considered
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in one-loop quantum cosmology. This paper derives the conditions under which spin-
raising operators preserve these local boundary conditions on a 3-sphere for fields of spin
0, %, 1, % and 2. Moreover, the two-component spinor analysis of the four potentials of the
totally symmetric and independent field strengths for spin % is applied to the case of a
3-sphere boundary. It is shown that such boundary conditions can only be imposed in

a flat Euclidean background, for which the gauge freedom in the choice of the potentials
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Spin-raising operators and spin-% potentials in quantum cosmology

Recent work in the literature has studied the quantization of gauge theories and supersym-
metric field theories in the presence of boundaries, with application to one-loop quantum
cosmology [1-9]. In particular, in the work described in [9], two possible sets of local
boundary conditions were studied. One of these, first proposed in anti-de Sitter space-
time [10-11], involves the normal to the boundary and Dirichlet or Neumann conditions
for spin 0, the normal and the field for massless spin—% fermions, the normal and totally
symmetric field strengths for spins 1,% and 2. Although more attention has been paid
to alternative local boundary conditions motivated by supersymmetry, as in [2-3,8-9], the
analysis of the former boundary conditions remains of mathematical and physical interest
by virtue of its links with twistor theory [9]. The aim of this paper is to derive further
mathematical properties of the corresponding boundary-value problems which are relevant
for quantum cosmology and twistor theory.

In section 5.7 of [9], a flat Euclidean background bounded by a 3-sphere was studied.

On the bounding S3, the following boundary conditions for a spin-s field were required:
28 enAA/”‘enLL/ ¢AL — j:gA/...L/ . (1)

With our notation, 21" is the Euclidean normal to S3 [3.9], ¢a..L = é(a..1) and

EA,ML, = g(A'...L’) are totally symmetric and independent (i.e. not related by any conju-
gation) field strengths, which reduce to the massless spin—% field for s = % Moreover, the
complex scalar field ¢ is such that its real part obeys Dirichlet conditions on S* and its
imaginary part obeys Neumann conditions on S?, or the other way around, according to

the value of the parameter e = +1 occurring in (1), as described in [9].
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In flat Euclidean 4-space, we write the solutions of the twistor equations [9,12]

D, 5B =0 (3)

as [9]
WA = (WA — @'(exAA’>7r;:,, (4)
GV =@ =i )F (5)

Note that, since unprimed and primed spin-spaces are no longer isomorphic in the case
of Riemannian 4-metrics, Eq. (3) is not obtained by complex conjugation of Eq. (2).
Hence the spinor field &8 is independent of w?. This leads to distinct solutions (4)-(5),
where the spinor fields w9,w%,, 7%, 7%, are covariantly constant with respect to the flat
connection D, whose corresponding spinor covariant derivative is here denoted by D sp/.
In section 5.7 of [9] it was shown that the spin-lowering operator [9,12] preserves the local

boundary conditions (1) on a 3-sphere of radius r if and only if
= (©

~ rer
wo/ :_—ﬂ'o/ . 7
A \/i A ( )

To derive the corresponding preservation condition for spin-raising operators [12], we begin
by studying the relation between spin—% and spin-1 fields. In this case, the independent

spin-1 field strengths take the form [9,11-12]

Yap=io" <DBL’ XA> — 2X(4 Ty (8)
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¢A’B’ = —Z (,uL <DLB’ %A') — 25(/(14/ 7TOB/) (9)

where the independent spinor fields <XA7%A/> represent a massless spin—% field obeying

the Weyl equations on flat Euclidean 4-space and subject to the boundary conditions
V2t oy = et (10)

on a 3-sphere of radius r. Thus, by requiring that (8) and (9) should obey (1) on S? with

s =1, and bearing in mind (10), one finds

2e \/§ /7\1:?4 %(A/ eTLAB/) — %(A/ 7To B/):| = Z|:2 eTLAA/ eTLBB/ &L/ DL'(B XA)
+ewl D,P yf”] (11)

on the bounding S*. It is now clear how to carry out the calculation for higher spins.

Denoting by s the spin obtained by spin-raising, and defining n = 2s, one finds

- =Y - Al / - i n / S N
ne \/571_?4 enA(A XB LK) X(A ...D 70 K ):| — Z|:22 enAA ‘”enI\I\ wL DL’(I( XA..D)

_I_ GC(JL DL(I(/ SC/A/...D/) (12)

on the 3-sphere boundary. In the comparison spin-0 vs spin—%, the preservation condition
is not obviously obtained from (12). The desired result is here found by applying the

spin-raising operators [12] to the independent scalar fields ¢ and 5 (see below) and bearing

in mind (4)-(5) and the boundary conditions

p=€e¢ on S* (13)
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enAA/DAA/qb:—eenBB/DBB/% on S® . (14)

This leads to the following condition on S? (cf Eq. (5.7.23) of [9]):

~ K’

0=1i¢ [?;% — T enAA/:| - [% <DAK’ </5> - %4 end <DCK' ¢>]

+ e en(AA/ wB DB)A’ (/5 . (15)

Note that, whilst the preservation conditions (6-7) for spin-lowering operators are purely
algebraic, the preservation conditions (12) and (15) for spin-raising operators are more
complicated, since they also involve the value at the boundary of four-dimensional covari-
ant derivatives of spinor fields or scalar fields. Two independent scalar fields have been
introduced, since the spinor fields obtained by applying the spin-raising operators to ¢ and
5 respectively are independent as well in our case.

In the second part of this paper, we focus on the totally symmetric field strengths
oapc and JA/B/C/ for spin—% fields, and we express them in terms of their potentials,
rather than using spin-raising (or spin-lowering) operators. The corresponding theory in
Minkowski space-time (and curved space-time) is described in [13-16], and adapted here
to the case of flat Euclidean 4-space with flat connection D. It turns out that 5,4/3,0, can
then be obtained from two potentials defined as follows. The first potential satisfies the

properties [13-16]

Yarg = Yarmn (16)
5A/B/C/ = Decor 1S 5 (18)
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with the gauge freedom of replacing it by
p =vp + D% var (19)
where v 4/ satisfies the positive-helicity Weyl equation
DA v, =0 . (20)

The second potential is defined by the conditions [13-16]

BC
phC = ol (21)
DAY pBC =0 (22)
vap =D p° (23)

with the gauge freedom of being replaced by
par =par + D% X (24)
where Y? satisfies the negative-helicity Weyl equation
Dpp X% =0 . (25)

Moreover, in flat Fuclidean 4-space the field strength ¢ 4pc 1s expressed in terms of the

potential P%Ef = I’(C};B), independent of 4§ 5/, as

®aBc = Dccr T%g (26)

with gauge freedom
TS =T +D% va . (27)
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Thus, if we insert (18) and (26) into the boundary conditions (1) with s = %, and re-
quire that also the gauge-equivalent potentials (19) and (27) should obey such boundary

conditions on S%, we find that

M

! o~
2 enAA/ enBB/ encc/ DCL/ DLB VA — € DLC/ DLB/ VAl (28)

on the 3-sphere. Note that, from now on (as already done in (12) and (15)), covariant
derivatives appearing in boundary conditions are first taken on the background and then
evaluated on $*. In the case of our flat background, (28) is identically satisfied since
Deyy DL/B va and Do DLB, v 4 vanish by virtue of spinor Ricci identities [17-18]. In
a curved background, however, denoting by V the corresponding curved connection, and
defining [ |4 = VM/(AVMé) [ as = Vixar VXB,), since the spinor Ricci identities
we need are [17]

[Jup ve = vYappe v —2M vi4 €epyo (29)

[arp ver = varpipier 77 — 28 U epnyon (30)
one finds that the corresponding boundary conditions

!

enAA/ enBB/ encc/ VCL/ VLB VA — € VLC/ VLB/ ZA/ (31)

M

2

are identically satisfied if and only if one of the following conditions holds: (i) v4 = v4r = 0;
(ii) the Weyl spinors ¢ apcp, %ZA'B'C/D’ and the scalars A, A vanish everywhere. However,

since in a curved space-time with vanishing A, /NX, the potentials with the gauge freedoms
(19) and (27) only exist provided D is replaced by V and the trace-free part ®,; of the

Ricci tensor vanishes as well [19], the background 4-geometry is actually flat Euclidean
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4-space. Note that we require that (31) should be identically satisfied to avoid that, after
a gauge transformation, one obtains more boundary conditions than the ones originally
imposed. The curvature of the background should not, itself, be subject to a boundary
condition.
The same result can be derived by using the potential pZ and its independent coun-

terpart Aglcl. This spinor field yields the P%Ef potential by means of
I =Dpp A5 < (32)

and has the gauge freedom
AT =T D0 )
where %B/ satisfies the positive-helicity Weyl equation

!

Dpp Y =0 . (34)

Thus, if also the gauge-equivalent potentials (24) and (33) have to satisfy the boundary

conditions (1) on S*, one finds

[

2 enAA/ enBB/ encc/ DCL/ DBF/ DLA %F =€ DLC/ DMB/ DLA/ XM (35)

on the 3-sphere. In our flat background, covariant derivatives commute, hence (35) is
identically satisfied by virtue of (25) and (34). However, in the curved case the boundary

conditions (35) are replaced by

[

2 enAA/ eTLBB/ enccl VCL/ VBF/ VLA %F =€ VLC/ VMB/ VLA/ XM (36)
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on 53, if the local expressions of ¢ 4pc and 5,4/3/0/ in terms of potentials still hold [13-16].
By virtue of (29)-(30), where v¢ is replaced by y¢ and ver is replaced by X¢v, this means
that the Weyl spinors @/)ABCD,%ZA'B'C'D' and the scalars A,/NX should vanish, since one
should find

VAN GBC g yAN RBC _q (37)

If we assume that Vgp XF/ = 0 and Vg Y™ = 0, we have to show that (36) differs
from (35) by terms involving a part of the curvature that is vanishing everywhere. This is

proved by using the basic rules of two-spinor calculus and spinor Ricci identities [17-18].

Thus, bearing in mind that [17]

~ ot >t

(]2 yp =248 5 \* (39)

one finds

yBB oA B = y(BB yOA B+ yIBB oA B

1 / ! 1N ! !
:_§VBB veA XB_|_§(I)ABLC YL . (40)

Thus, if eA'B'LC vanishes, also the left-hand side of (40) has to vanish since this leads to
the equation VBB VA 5 = %VBB/ VA . Hence (40) is identically satisfied. Sim-
ilarly, the left-hand side of (36) can be made to vanish identically provided the additional

condition ®CPF'M" — 0 holds. The conditions

@CDF/M/ — 0 &)A/B/CL — 0 (41)
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when combined with the conditions
Yapep =dbapop =0 A=A=0 (42)

arising from (37) for the local existence of pB¢ and Aglcl potentials, imply that the
whole Riemann curvature should vanish. Hence, in the boundary-value problems we are
interested in, the only admissible background 4-geometry (of the Einstein type [20]) is flat
Euclidean 4-space.

In conclusion, in our paper we have completed the characterization of the conditions
under which spin-lowering and spin-raising operators preserve the local boundary condi-
tions studied in [9-11]. Note that, for spin 0, we have introduced a pair of independent
scalar fields on the real Riemannian section of a complex space-time, following [21], rather
than a single scalar field, as done in [9]. Setting ¢ = ¢y + 12, 5 = ¢3 + 1¢y, this choice

leads to the boundary conditions

pr=€¢ds dy=¢€¢y on S§° (43)
enAA/ Das ¢ = —¢ enAA/ Dya ¢35 on S? (44)
enAA/ DAA/ q§2 = —€ enAA/ DAA’ q§4 o1l 53 (45)

and it deserves further study.

We have then focused on the potentials for spin—% field strengths in flat or curved
Riemannian 4-space bounded by a 3-sphere. Remarkably, it turns out that local boundary
conditions involving field strengths and normals can only be imposed in a flat Euclidean

background, for which the gauge freedom in the choice of the potentials remains. In [16]
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it was found that p potentials exist locally only in the self-dual Ricci-flat case, whereas ~
potentials may be introduced in the anti-self-dual case. Our result may be interpreted as
a further restriction provided by (quantum) cosmology.

A naturally occurring question is whether the potentials studied in this paper can
be used to perform one-loop calculations for spin—% field strengths subject to (1) on S3.
This problem may provide another example (cf [9]) of the fertile interplay between twistor
theory and quantum cosmology, and its solution might shed new light on one-loop quantum

cosmology and on the quantization program for gauge theories in the presence of boundaries

[1-9].
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