226 research outputs found

    Better but still biased: Analytic cognitive style and belief bias

    Get PDF
    Belief bias is the tendency for prior beliefs to influence people's deductive reasoning in two ways: through the application of a simple belief-heuristic (response bias) and through the application of more effortful reasoning for unbelievable conclusions (accuracy effect or motivated reasoning). Previous research indicates that cognitive ability is the primary determinant of the effect of beliefs on accuracy. In the current study, we show that the mere tendency to engage analytic reasoning (analytic cognitive style) is responsible for the effect of cognitive ability on motivated reasoning. The implications of this finding for our understanding of the impact of individual differences on belief bias are discussed

    Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    Get PDF
    © 2016. We present a case study describing efforts to optimise and modernise "Modal", the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches.We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.This research is supported by an STFC consolidated grant ST/L000636/1, and funded in part by the Intel R Parallel Computing Centre program. This work was undertaken on the COSMOS Shared Memory system at DAMTP, University of Cambridge operated on behalf of the STFC DiRAC HPC Facility. This equipment is funded by BIS National E-infrastructure capital grant ST/J005673/1 and STFC grants ST/H008586/1, ST/K00333X/1

    Segregation of in to dislocations in InGaN

    No full text
    Dislocations are one-dimensional topological defects that occur frequently in functional thin film materials and that are known to degrade the performance of InxGa1-xN-based optoelectronic devices. Here, we show that large local deviations in alloy composition and atomic structure are expected to occur in and around dislocation cores in InxGa1-xN alloy thin films. We present energy-dispersive X-ray spectroscopy data supporting this result. The methods presented here are also widely applicable for predicting composition fluctuations associated with strain fields in other inorganic functional material thin films

    Dislocation core structures in (0001) InGaN

    Get PDF
    Threading dislocation core structures in c-plane GaN and InxGa1−xN (0.057 ≤ x ≤ 0.20) films were investigated by aberration-corrected scanning transmission electron microscopy. a-type dislocations are unaffected by alloying with indium and have a 5/7-atom ring core structure in both GaN and InxGa1−xN. In contrast, the dissociation lengths of (a + c)-type dislocations are reduced, and new 7/4/9-atom ring and 7/4/8/5-atom ring core structures were observed for the dissociated (a + c)-type dislocations in InxGa1−xN, which is associated with the segregation of indium near (a + c)-type and c-type dislocation cores in InxGa1−xN, consistent with predictions from atomistic Monte Carlo simulations.This work was funded in part by the Cambridge Commonwealth Trust, St. John’s College and the EPSRC (grant number EP/I012591/1). MAM acknowledges support from the Royal Society through a University Research Fellowship. Additional support was provided by the EPSRC (Supplementary data for EPSRC [49] is available) through the UK National Facility for Aberration-Corrected STEM (SuperSTEM). The Titan 80-200kV ChemiSTEM™ was funded through HM Government (UK) and is associated with the capabilities of the University of Manchester Nuclear Manufacturing (NUMAN) capabilities. SJH acknowledges funding from the Defence Threat Reduction Agency (DTRA) USA (grant number HDTRA1-12-1-0013). The authors also acknowledge C. M. McGilvery and A. Kovacs for helpful discussions.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by AIP

    Chemical characterization of extra layers at the interfaces in MOCVD InGaP/GaAs junctions by electron beam methods

    Get PDF
    Electron beam methods, such as cathodoluminescence (CL) that is based on an electron-probe microanalyser, and (200) dark field and high angle annular dark field (HAADF) in a scanning transmission electron microscope, are used to study the deterioration of interfaces in InGaP/GaAs system with the GaAs QW on top of InGaP. A CL emission peak different from that of the QW was detected. By using HAADF, it is found that the GaAs QW does not exist any longer, being replaced by extra interlayer(s) that are different from GaAs and InGaP because of atomic rearrangements at the interface. The nature and composition of the interlayer(s) are determined by HAADF. Such changes of the nominal GaAs QW can account for the emission observed by CL

    What limits supercurrents in high temperature superconductors? A microscopic model of cuprate grain boundaries

    Full text link
    The interface properties of high-temperature cuprate superconductors have been of interest for many years, and play an essential role in Josephson junctions, superconducting cables, and microwave electronics. In particular, the maximum critical current achievable in high-Tc wires and tapes is well known to be limited by the presence of grain boundaries, regions of mismatch between crystallites with misoriented crystalline axes. In studies of single, artificially fabricated grain boundaries the striking observation has been made that the critical current Jc of a grain boundary junction depends exponentially on the misorientation angle. Until now microscopic understanding of this apparently universal behavior has been lacking. We present here the results of a microscopic evaluation based on a construction of fully 3D YBCO grain boundaries by molecular dynamics. With these structures, we calculate an effective tight-binding Hamiltonian for the d-wave superconductor with a grain boundary. The critical current is then shown to follow an exponential suppression with grain boundary angle. We identify the buildup of charge inhomogeneities as the dominant mechanism for the suppression of the supercurrent.Comment: 28 pages, 12 figure

    When fast logic meets slow belief: Evidence for a parallel-processing model of belief bias.

    Get PDF
    Two experiments pitted the default-interventionist account of belief bias against a parallel-processing model. According to the former, belief bias occurs because a fast, belief-based evaluation of the conclusion pre-empts a working-memory demanding logical analysis. In contrast, according to the latter both belief-based and logic-based responding occur in parallel. Participants were given deductive reasoning problems of variable complexity and instructed to decide whether the conclusion was valid on half the trials or to decide whether the conclusion was believable on the other half. When belief and logic conflict, the default-interventionist view predicts that it should take less time to respond on the basis of belief than logic, and that the believability of a conclusion should interfere with judgments of validity, but not the reverse. The parallel-processing view predicts that beliefs should interfere with logic judgments only if the processing required to evaluate the logical structure exceeds that required to evaluate the knowledge necessary to make a belief-based judgment, and vice versa otherwise. Consistent with this latter view, for the simplest reasoning problems (modus ponens), judgments of belief resulted in lower accuracy than judgments of validity, and believability interfered more with judgments of validity than the converse. For problems of moderate complexity (modus tollens and single-model syllogisms), the interference was symmetrical, in that validity interfered with belief judgments to the same degree that believability interfered with validity judgments. For the most complex (three-term multiple-model syllogisms), conclusion believability interfered more with judgments of validity than vice versa, in spite of the significant interference from conclusion validity on judgments of belief

    Aberration-corrected electron microscopy of nanoparticles

    Get PDF
    The early history of scanning transmission electron microscopy (STEM) is reviewed as a way to frame the technical issues that make aberration correction an essential upgrade for the study of nanoparticles using STEM. The principles of aberration correction are explained, and the use of aberration-corrected microscopy in the study of nanostructures is exemplified in order to remark the features and challenges in the use of this measuring techniqu
    corecore