27 research outputs found

    Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site

    No full text
    International audienceMost cancer immunotherapies under present investigation are based on the belief that cytotoxic T cells are the most important anti-tumoral immune cells, whereas intra-tumoral macrophages would rather play a pro-tumoral role. We have challenged this antagonistic point of view and searched for collaborative contributions by tumor-infiltrating T cells and macrophages, reminiscent of those observed in anti-infectious responses. We demonstrate that, in a model of therapeutic vaccination, cooperation between myeloid cells and T cells is indeed required for tumor rejection. Vaccination elicited an early rise of CD11b + myeloid cells that preceded and conditioned the intra-tumoral accumulation of CD8 + T cells. Conversely, CD8 + T cells and IFNγ production activated myeloid cells were required for tumor regression. A 4-fold reduction of CD8 + T cell infiltrate in CXCR3KO mice did not prevent tumor regression, whereas a reduction of tumor-infiltrating myeloid cells significantly interfered with vaccine efficiency. We show that macrophages from regressing tumors can kill tumor cells in two ways: phagocytosis and TNFα release. Altogether, our data suggest new strategies to improve the efficiency of cancer immunotherapies, by promoting intra-tumoral cooperation between macrophages and T cells

    Restoring Retinoic Acid Attenuates Intestinal Inflammation and Tumorigenesis in APC Min/+

    No full text
    Chronic intestinal inflammation accompanies familial adenomatous polyposis (FAP) and is a major risk factor for colorectal cancer in patients with this disease, but the cause of such inflammation is unknown. Since retinoic acid (RA) plays a critical role in maintaining immune homeostasis in the intestine, we hypothesized that altered RA metabolism contributes to inflammation and tumorigenesis in FAP. To assess this hypothesis, we analyzed RA metabolism in the intestines of patients with FAP as well as APC(Min/+) mice, a model that recapitulates FAP in most respects. We also investigated the impact of intestinal RA repletion and depletion on tumorigenesis and inflammation in APC(Min/+) mice. Tumors from both FAP patients and APC(Min/+) mice displayed striking alterations in RA metabolism that resulted in reduced intestinal RA. APC(Min/+) mice placed on a vitamin A deficient diet exhibited further reductions in intestinal RA with concomitant increases in inflammation and tumor burden. Conversely, restoration of RA by pharmacological blockade of the RA-catabolizing enzyme CYP26A1 attenuated inflammation and diminished tumor burden. To investigate the effect of RA deficiency on the gut immune system, we studied lamina propria dendritic cells (LPDCs) since these cells play a central role in promoting tolerance. APC(Min/+) LPDCs preferentially induced Th17 cells, but reverted to inducing Tregs following restoration of intestinal RA in vivo or direct treatment of LPDCs with RA in vitro. These findings demonstrate the importance of intestinal RA deficiency in tumorigenesis and suggest that pharmacological repletion of RA could reduce tumorigenesis in FAP patients

    Restoring Retinoic Acid Attenuates Intestinal Inflammation and Tumorigenesis in APCMin/+ Mice.

    No full text
    Chronic intestinal inflammation accompanies familial adenomatous polyposis (FAP) and is a major risk factor for colorectal cancer in patients with this disease, but the cause of such inflammation is unknown. Because retinoic acid (RA) plays a critical role in maintaining immune homeostasis in the intestine, we hypothesized that altered RA metabolism contributes to inflammation and tumorigenesis in FAP. To assess this hypothesis, we analyzed RA metabolism in the intestines of patients with FAP as well as APCMin/+ mice, a model that recapitulates FAP in most respects. We also investigated the impact of intestinal RA repletion and depletion on tumorigenesis and inflammation in APCMin/+ mice. Tumors from both FAP patients and APCMin/+ mice displayed striking alterations in RA metabolism that resulted in reduced intestinal RA. APCMin/+ mice placed on a vitamin A-deficient diet exhibited further reductions in intestinal RA with concomitant increases in inflammation and tumor burden. Conversely, restoration of RA by pharmacologic blockade of the RA-catabolizing enzyme CYP26A1 attenuated inflammation and diminished tumor burden. To investigate the effect of RA deficiency on the gut immune system, we studied lamina propria dendritic cells (LPDC) because these cells play a central role in promoting tolerance. APCMin/+ LPDCs preferentially induced Th17 cells, but reverted to inducing Tregs following restoration of intestinal RA in vivo or direct treatment of LPDCs with RA in vitro These findings demonstrate the importance of intestinal RA deficiency in tumorigenesis and suggest that pharmacologic repletion of RA could reduce tumorigenesis in FAP patients. Cancer Immunol Res; 4(11); 917-26. ©2016 AACR

    Conditional Knockout of Hypoxia-Inducible Factor 1-Alpha in Tumor-Infiltrating Neutrophils Protects against Pancreatic Ductal Adenocarcinoma

    No full text
    Large numbers of neutrophils infiltrate tumors and comprise a notable component of the inflammatory tumor microenvironment. While it is established that tumor cells exhibit the Warburg effect for energy production, the contribution of the neutrophil metabolic state to tumorigenesis is unknown. Here, we investigated whether neutrophil infiltration and metabolic status promotes tumor progression in an orthotopic mouse model of pancreatic ductal adenocarcinoma (PDAC). We observed a large increase in the proportion of neutrophils in the blood and tumor upon orthotopic transplantation. Intriguingly, these tumor-infiltrating neutrophils up-regulated glycolytic factors and hypoxia-inducible factor 1-alpha (HIF-1α) expression compared to neutrophils from the bone marrow and blood of the same mouse. This enhanced glycolytic signature was also observed in human PDAC tissue samples. Strikingly, neutrophil-specific deletion of HIF-1α (HIF-1αΔNφ) significantly reduced tumor burden and improved overall survival in orthotopic transplanted mice, by converting the pro-tumorigenic neutrophil phenotype to an anti-tumorigenic phenotype. This outcome was associated with elevated reactive oxygen species production and activated natural killer cells and CD8+ cytotoxic T cells compared to littermate control mice. These data suggest a role for HIF-1α in neutrophil metabolism, which could be exploited as a target for metabolic modulation in cancer

    Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions

    Get PDF
    Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.We thank all members of L.G.N laboratory, the SIgN (Singapore Immunology Network) flow-cytometry team, the SIgN functional genomics team for their assistance with transcriptomics, and the SIgN mouse core facility for their technical help and support. This research was funded by SIgN core funding, A*STAR (Agency for Science, Technology and Research), Singapore.S

    A Phase I Study of Acapatamab, a Half-life Extended, PSMA-Targeting Bispecific T-cell Engager for Metastatic Castration-Resistant Prostate Cancer

    No full text
    Purpose: Safety and efficacy of acapatamab, a prostate-specific membrane antigen (PSMA) x CD3 bispecific T-cell engager were evaluated in a first-in-human study in metastatic castration-resistant prostate cancer (mCRPC).Patients and Methods: Patients with mCRPC refractory to androgen receptor pathway inhibitor therapy and taxane-based chemotherapy received target acapatamab doses ranging from 0.003 to 0.9 mg in dose exploration (seven dose levels) and 0.3 mg (recommended phase II dose) in dose expansion intravenously every 2 weeks. Safety (primary objective), pharmacokinetics, and antitumor activity (secondary objectives) were assessed. Results: In all, 133 patients (dose exploration, n ¼ 77; dose expansion, n ¼ 56) received acapatamab. Cytokine release syndrome (CRS) was the most common treatment-emergent adverse event seen in 97.4% and 98.2% of patients in dose exploration and dose expansion, respectively; grade ≥ 3 was seen in 23.4% and 16.1%, respectively. Most CRS events were seen in treatment cycle 1; incidence and severity decreased at/beyond cycle 2. In dose expansion, confirmed prostate-specific antigen (PSA) responses (PSA50) were seen in 30.4% of patients and radiographic partial responses in 7.4% (Response Evaluation Criteria in Solid Tumors 1.1). Median PSA progression-free survival (PFS) was 3.3 months [95% confidence interval (CI): 3.0–4.9], radiographic PFS per Prostate Cancer Clinical Trials Working Group 3 was 3.7 months (95% CI: 2.0–5.4). Acapatamab induced T-cell activation and increased cytokine production several-fold within 24 hours of initiation. Treatment-emergent antidrug antibodies were detected in 55% and impacted serum exposures in 36% of patients in dose expansion. Conclusions: Acapatamab was safe and tolerated and had a manageable CRS profile. Preliminary signs of efficacy with limited durable antitumor activity were observed. Acapatamab demonstrated pharmacokinetic and pharmacodynamic activity.</p

    A Phase I Study of Acapatamab, a Half-life Extended, PSMA-Targeting Bispecific T-cell Engager for Metastatic Castration-Resistant Prostate Cancer

    No full text
    Purpose: Safety and efficacy of acapatamab, a prostate-specific membrane antigen (PSMA) x CD3 bispecific T-cell engager were evaluated in a first-in-human study in metastatic castration-resistant prostate cancer (mCRPC).Patients and Methods: Patients with mCRPC refractory to androgen receptor pathway inhibitor therapy and taxane-based chemotherapy received target acapatamab doses ranging from 0.003 to 0.9 mg in dose exploration (seven dose levels) and 0.3 mg (recommended phase II dose) in dose expansion intravenously every 2 weeks. Safety (primary objective), pharmacokinetics, and antitumor activity (secondary objectives) were assessed. Results: In all, 133 patients (dose exploration, n ¼ 77; dose expansion, n ¼ 56) received acapatamab. Cytokine release syndrome (CRS) was the most common treatment-emergent adverse event seen in 97.4% and 98.2% of patients in dose exploration and dose expansion, respectively; grade ≥ 3 was seen in 23.4% and 16.1%, respectively. Most CRS events were seen in treatment cycle 1; incidence and severity decreased at/beyond cycle 2. In dose expansion, confirmed prostate-specific antigen (PSA) responses (PSA50) were seen in 30.4% of patients and radiographic partial responses in 7.4% (Response Evaluation Criteria in Solid Tumors 1.1). Median PSA progression-free survival (PFS) was 3.3 months [95% confidence interval (CI): 3.0–4.9], radiographic PFS per Prostate Cancer Clinical Trials Working Group 3 was 3.7 months (95% CI: 2.0–5.4). Acapatamab induced T-cell activation and increased cytokine production several-fold within 24 hours of initiation. Treatment-emergent antidrug antibodies were detected in 55% and impacted serum exposures in 36% of patients in dose expansion. Conclusions: Acapatamab was safe and tolerated and had a manageable CRS profile. Preliminary signs of efficacy with limited durable antitumor activity were observed. Acapatamab demonstrated pharmacokinetic and pharmacodynamic activity.</p
    corecore