384 research outputs found

    Prenatal Phthalate Exposure Is Associated with Childhood Behavior and Executive Functioning

    Get PDF
    Background: Experimental and observational studies have reported biological consequences of phthalate exposure relevant to neurodevelopment. Objective: Our goal was to examine the association of prenatal phthalate exposure with behavior and executive functioning at 4-9 years of age. Methods: The Mount Sinai Children's Environmental Health Study enrolled a multiethnic prenatal population in New York City between 1998 and 2002 (n = 404). Third-trimester maternal urines were collected and analyzed for phthalate metabolites. Children (n = 188, n = 365 visits) were assessed for cognitive and behavioral development between the ages of 4 and 9 years. Results: In multivariate adjusted models, increased loge concentrations of low molecular weight (LMW) phthalate metabolites were associated with poorer scores on the aggression [β = 1.24; 95% confidence interval (CI), 0.15- 2.34], conduct problems (β = 2.40; 95% CI, 1.34-3.46), attention problems (β = 1.29; 95% CI, 0.16- 2.41), and depression (β = 1.18; 95% CI, 0.11-2.24) clinical scales; and externalizing problems (β = 1.75; 95% CI, 0.61-2.88) and behavioral symptom index (β = 1.55; 95% CI, 0.39-2.71) composite scales. Increased loge concentrations of LMW phthalates were also associated with poorer scores on the global executive composite index (β = 1.23; 95% CI, 0.09-2.36) and the emotional control scale (β = 1.33; 95% CI, 0.18- 2.49). Conclusion: Behavioral domains adversely associated with prenatal exposure to LMW phthalates in our study are commonly found to be affected in children clinically diagnosed with conduct or attention deficit hyperactivity disorders

    Genetic Covariance Structure of Reading, Intelligence and Memory in Children

    Get PDF
    This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two

    Postural control is not systematically related to reading skills:implications for the assessment of balance as a risk factor for developmental dyslexia

    Get PDF
    Impaired postural control has been associated with poor reading skills, as well as with lower performance on measures of attention and motor control variables that frequently co-occur with reading difficulties. Measures of balance and motor control have been incorporated into several screening batteries for developmental dyslexia, but it is unclear whether the relationship between such skills and reading manifests as a behavioural continuum across the range of abilities or is restricted to groups of individuals with specific disorder phenotypes. Here were obtained measures of postural control alongside measures of reading, attention and general cognitive skills in a large sample of young adults (n = 100). Postural control was assessed using centre of pressure (CoP) measurements, obtained over 5 different task conditions. Our results indicate an absence of strong statistical relationships between balance measures with either reading, cognitive or attention measures across the sample as a whole. © 2014 Loras et al

    Development and validation of the Arizona Cognitive Test Battery for Down syndrome

    Get PDF
    Neurocognitive assessment in individuals with intellectual disabilities requires a well-validated test battery. To meet this need, the Arizona Cognitive Test Battery (ACTB) has been developed specifically to assess the cognitive phenotype in Down syndrome (DS). The ACTB includes neuropsychological assessments chosen to 1) assess a range of skills, 2) be non-verbal so as to not confound the neuropsychological assessment with language demands, 3) have distributional properties appropriate for research studies to identify genetic modifiers of variation, 4) show sensitivity to within and between sample differences, 5) have specific correlates with brain function, and 6) be applicable to a wide age range and across contexts. The ACTB includes tests of general cognitive ability and prefrontal, hippocampal and cerebellar function. These tasks were drawn from the Cambridge Neuropsychological Testing Automated Battery (CANTAB) and other established paradigms. Alongside the cognitive testing battery we administered benchmark and parent-report assessments of cognition and behavior. Individuals with DS (n = 74, ages 7–38 years) and mental age (MA) matched controls (n = 50, ages 3–8 years) were tested across 3 sites. A subsample of these groups were used for between-group comparisons, including 55 individuals with DS and 36 mental age matched controls. The ACTB allows for low floor performance levels and participant loss. Floor effects were greater in younger children. Individuals with DS were impaired on a number ACTB tests in comparison to a MA-matched sample, with some areas of spared ability, particularly on tests requiring extensive motor coordination. Battery measures correlated with parent report of behavior and development. The ACTB provided consistent results across contexts, including home vs. lab visits, cross-site, and among individuals with a wide range of socio-economic backgrounds and differences in ethnicity. The ACTB will be useful in a range of outcome studies, including clinical trials and the identification of important genetic components of cognitive disability

    A review of trisomy X (47,XXX)

    Get PDF
    Trisomy X is a sex chromosome anomaly with a variable phenotype caused by the presence of an extra X chromosome in females (47,XXX instead of 46,XX). It is the most common female chromosomal abnormality, occurring in approximately 1 in 1,000 female births. As some individuals are only mildly affected or asymptomatic, it is estimated that only 10% of individuals with trisomy X are actually diagnosed. The most common physical features include tall stature, epicanthal folds, hypotonia and clinodactyly. Seizures, renal and genitourinary abnormalities, and premature ovarian failure (POF) can also be associated findings. Children with trisomy X have higher rates of motor and speech delays, with an increased risk of cognitive deficits and learning disabilities in the school-age years. Psychological features including attention deficits, mood disorders (anxiety and depression), and other psychological disorders are also more common than in the general population. Trisomy X most commonly occurs as a result of nondisjunction during meiosis, although postzygotic nondisjunction occurs in approximately 20% of cases. The risk of trisomy X increases with advanced maternal age. The phenotype in trisomy X is hypothesized to result from overexpression of genes that escape X-inactivation, but genotype-phenotype relationships remain to be defined. Diagnosis during the prenatal period by amniocentesis or chorionic villi sampling is common. Indications for postnatal diagnoses most commonly include developmental delays or hypotonia, learning disabilities, emotional or behavioral difficulties, or POF. Differential diagnosis prior to definitive karyotype results includes fragile X, tetrasomy X, pentasomy X, and Turner syndrome mosaicism. Genetic counseling is recommended. Patients diagnosed in the prenatal period should be followed closely for developmental delays so that early intervention therapies can be implemented as needed. School-age children and adolescents benefit from a psychological evaluation with an emphasis on identifying and developing an intervention plan for problems in cognitive/academic skills, language, and/or social-emotional development. Adolescents and adult women presenting with late menarche, menstrual irregularities, or fertility problems should be evaluated for POF. Patients should be referred to support organizations to receive individual and family support. The prognosis is variable, depending on the severity of the manifestations and on the quality and timing of treatment

    Convergent genetic linkage and associations to language, speech and reading measures in families of probands with Specific Language Impairment

    Get PDF
    We analyzed genetic linkage and association of measures of language, speech and reading phenotypes to candidate regions in a single set of families ascertained for SLI. Sib-pair and family-based analyses were carried out for candidate gene loci for Reading Disability (RD) on chromosomes 1p36, 3p12-q13, 6p22, and 15q21, and the speech-language candidate region on 7q31 in a sample of 322 participants ascertained for Specific Language Impairment (SLI). Replication or suggestive replication of linkage was obtained in all of these regions, but the evidence suggests that the genetic influences may not be identical for the three domains. In particular, linkage analysis replicated the influence of genes on chromosome 6p for all three domains, but association analysis indicated that only one of the candidate genes for reading disability, KIAA0319, had a strong effect on language phenotypes. The findings are consistent with a multiple gene model of the comorbidity between language impairments and reading disability and have implications for neurocognitive developmental models and maturational processes

    Increased male reproductive success in Ts65Dn “Down syndrome” mice

    Get PDF
    The Ts65Dn mouse is trisomic for orthologs of about half the genes on Hsa21. A number of phenotypes in these trisomic mice parallel those in humans with trisomy 21 (Down syndrome), including cognitive deficits due to hippocampal malfunction that are sufficiently similar to human that “therapies” developed in Ts65Dn mice are making their way to human clinical trials. However, the impact of the model is limited by availability. Ts65Dn cannot be completely inbred and males are generally considered to be sterile. Females have few, small litters and they exhibit poor care of offspring, frequently abandoning entire litters. Here we report identification and selective breeding of rare fertile males from two working colonies of Ts65Dn mice. Trisomic offspring can be propagated by natural matings or by in vitro fertilization (IVF) to produce large cohorts of closely related siblings. The use of a robust euploid strain as recipients of fertilized embryos in IVF or as the female in natural matings greatly improves husbandry. Extra zygotes cultured to the blastocyst stage were used to create trisomic and euploid embryonic stem (ES) cells from littermates. We developed parameters for cryopreserving sperm from Ts65Dn males and used it to produce trisomic offspring by IVF. Use of cryopreserved sperm provides additional flexibility in the choice of oocyte donors from different genetic backgrounds, facilitating rapid production of complex crosses. This approach greatly increases the power of this important trisomic model to interrogate modifying effects of trisomic or disomic genes that contribute to trisomic phenotypes

    Brief Report: Inhibitory Control of Socially Relevant Stimuli in Children with High Functioning Autism

    Get PDF
    The current study explored whether inhibitory control deficits in high functioning autism (HFA) emerged when socially relevant stimuli were used and whether arousal level affected the performance. A Go/NoGo paradigm, with socially relevant stimuli and varying presentation rates, was applied in 18 children with HFA (including children with autism or Asperger syndrome) and 22 typically developing children (aged 8–13 years). Children with HFA did not show inhibitory control deficits compared to the control group, but their performance deteriorated in the slow presentation rate condition. Findings were unrelated to children’s abilities to recognize emotions. Hence, rather than a core deficit in inhibitory control, low arousal level in response to social stimuli might influence the responses given by children with HFA

    How Distinctive are ADHD and RD? Results of a Double Dissociation Study

    Get PDF
    The nature of the comorbidity between Attention-Deficit/Hyperactivity Disorder (ADHD) and Reading Disability (RD) was examined using a double dissociation design. Children were between 8 and 12 years of age and entered into four groups: ADHD only (n = 24), ADHD+RD (n = 29), RD only (n = 41) and normal controls (n = 26). In total, 120 children participated in the study; 38 girls and 82 boys. Both ADHD and RD were associated with impairments in inhibition and lexical decision, although inhibition and lexical decision were more severely impaired in RD than in ADHD. Visuospatial working memory deficits were specific to children with only ADHD. It is concluded that there was overlap on lexical decision and to a lesser extent on inhibition between ADHD and RD. In ADHD, impairments were dependent on IQ, which suggest that the overlap in lexical decision and inhibition is different in origin for ADHD and RD. The ADHD only group was specifically characterized by deficits in visuospatial working memory. Hence, no double dissociation between ADHD and RD was found on executive functioning and lexical decision

    Learning efficacy of explicit visuomotor sequences in children with attention-deficit/hyperactivity disorder and Asperger syndrome

    Get PDF
    Developmental disorders such as attention-deficit/hyperactivity disorder (ADHD) and Asperger syndrome (AS) are often associated with learning disabilities. This study investigated the explicit learning of visuomotor sequences in 17 ADHD children (mean age 12.1), 21 AS children (mean age 12.7), and 15 typically developing children (mean age: 12.3). The participants were required to explore a hidden sequence of button presses by trial and error and elaborate the learned sequence (2 × 10 task: Hikosaka et al. 1996). The results indicated that although ADHD and AS children had a tendency of repeating the same errors and took longer to complete a sequence, both showed a degree and pattern of improvement in accuracy and speed similar to that of typically developing children. These results suggest that the explicit learning of visuomotor sequence in ADHD and AS patients is largely unimpaired
    corecore