12 research outputs found

    Ti/Pd/Ag Contacts to n-Type GaAs for High Current Density Devices

    Get PDF
    The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm−3 to 1.6 × 1019 cm−3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm−3 had Schottky-like I–V characteristics and only samples doped 1.6 × 1019 cm−3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance (ρ c,Ti/Pd/Ag ~ 5 × 10−4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C (ρ M,Ti/Pd/Ag ~ 2.3 × 10−6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity

    The Default Mode Network Supports Episodic Memory in Cognitively Unimpaired Elderly Individuals: Different Contributions to Immediate Recall and Delayed Recall

    Get PDF
    While the neural correlates of age-related decline in episodic memory have been the subject of much interest, the spontaneous functional architecture of the brain for various memory processes in elderly adults, such as immediate recall (IR) and delayed recall (DR), remains unclear. The present study thus examined the neural correlates of age-related decline of various memory processes. A total of 66 cognitively normal older adults (aged 60-80 years) participated in this study. Memory processes were measured using the Auditory Verbal Learning Test as well as resting-state brain images, which were analyzed using both regional homogeneity (ReHo) and correlation-based functional connectivity (FC) approaches. We found that both IR and DR were significantly correlated with the ReHo of these critical regions, all within the default mode network (DMN), including the parahippocampal gyrus, posterior cingulate cortex/precuneus, inferior parietal lobule, and medial prefrontal cortex. In addition, DR was also related to the FC between these DMN regions. These results suggest that the DMN plays different roles in memory retrieval across different retention intervals, and connections between the DMN regions contribute to memory consolidation of past events in healthy older people

    Al-based front contacts for HCPV solar cell

    Full text link
    One of the key design challenges for high efficiency concentrator solar cells is to minimize the impact of ohmic losses associated with the large current densities that these devices handle. Typically, the most critical component of the series resistance is that of the front contact. On the one hand, in order to minimize its metal-semiconductor specific contact resistance, AuGeNi alloys are frequently used at the interface. On the other hand, to minimize the metal sheet resistance in the grid, thick silver layers are used, sometimes even coated with a gold capping layer. Such configuration results in a contact with good performance, but with elevated cost, and sometimes prone to suffering from degradation problems (electromigration, spiking, ?) and deteriorated metal sheet conductance due to the interdiffusion between GaAs and the metals in the contact. In this work, we have explored a low cost high performance alternative based on Pd/Ge/Ti/Pd/Al metal stacks. The thicker top Al layer offers low metal resistivity, low cost, and good bondability; the middle Ti/Pd bilayer works as an efficient two-way diffusion barrier; and the interfacial Pd/Ge layer provides very low specific contact resistance to the GaAs contact layer. The results show that a Pd/Ge/Ti/Pd/Al front contact reduces the series resistance and thus can improve the performance of solar cells at ultrahigh concentration levels

    The Default Mode Network Supports Episodic Memory in Cognitively Unimpaired Elderly Individuals: Different Contributions to Immediate Recall and Delayed Recall

    No full text
    While the neural correlates of age-related decline in episodic memory have been the subject of much interest, the spontaneous functional architecture of the brain for various memory processes in elderly adults, such as immediate recall (IR) and delayed recall (DR), remains unclear. The present study thus examined the neural correlates of age-related decline of various memory processes. A total of 66 cognitively normal older adults (aged 60–80 years) participated in this study. Memory processes were measured using the Auditory Verbal Learning Test as well as resting-state brain images, which were analyzed using both regional homogeneity (ReHo) and correlation-based functional connectivity (FC) approaches. We found that both IR and DR were significantly correlated with the ReHo of these critical regions, all within the default mode network (DMN), including the parahippocampal gyrus, posterior cingulate cortex/precuneus, inferior parietal lobule, and medial prefrontal cortex. In addition, DR was also related to the FC between these DMN regions. These results suggest that the DMN plays different roles in memory retrieval across different retention intervals, and connections between the DMN regions contribute to memory consolidation of past events in healthy older people

    Comparison of Ti/Pd/Ag, Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-type GaAs for electronic devices handling high current densities

    Full text link
    In the quest for metal contacts for electronic devices handling high current densities, we report the results of Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-GaAs and compare them to Ti/ Pd/Ag and AuGe/Ni/Au. These metal systems have been designed with the goal of producing an electrical contact with (a) low metal–semiconductor specific contact resistance, (b) very high sheet conductance, (c) good bondability, (d) long-term durability and (e) cost-effectiveness. The structure of the contacts consists of an interfacial layer (either Pd or Pd/Ge) intended to produce a low metal–semiconductor specific contact resistance; a diffusion barrier (Ti/Pd) and a thick top layer of Ag to provide the desired high sheet conductance, limited cost and good bondability. The results show that both systems can achieve very low metal resistivity (ρM ∼ 2 × 10−6 Ω cm), reaching values close to that of pure bulk silver. This fact is attributed to the Ti/Pd bilayer acting as an efficient diffusion barrier, and thus the metal sheet resistance can be controlled by the thickness of the deposited silver layer. Moreover, the use of Pd as interfacial layer produces contacts with moderate specific contact resistance (ρC ∼ 10−4 Ω cm2 ) whilst the use of Pd/Ge decreases the specific contact resistance to ρC ∼ 1.5 × 10−7 Ω cm2 , as a result of the formation of a Pd4(GaAs, Ge2) compound at the GaAs interface

    Mild Cognitive Impairment Is Not "Mild" at All in Altered Activation of Episodic Memory Brain Networks: Evidence from ALE Meta-Analysis

    Get PDF
    The present study conducted a quantitative meta-analysis aiming at assessing consensus across the functional neuroimaging studies of episodic memory in individuals with amnestic mild cognitive impairment (aMCI) and elucidating consistent activation patterns. An activation likelihood estimation (ALE) was conducted on the functional neuroimaging studies of episodic encoding and retrieval in aMCI individuals published up to March 31, 2015. Analyses covered 24 studies, which yielded 770 distinct foci. Compared to healthy controls, aMCI individuals showed statistically significant consistent activation differences in a widespread episodic memory network, not only in the bilateral medial temporal lobe and prefrontal cortex, but also in the angular gyrus, precunes, posterior cingulate cortex, and even certain more basic structures. The present ALE meta-analysis revealed that the abnormal patterns of widespread episodic memory network indicated that individuals with aMCI may not be completely &quot;mild&quot; in nature.</p

    Concentración fotovoltaica

    Full text link
    En la última década, la electricidad de origen fotovoltaico ha experimentado un enorme crecimiento a razón de gigavatio por año, demostrando de este modo su potencial para convertirse en una fuente importante de generación eléctrica. Grosso modo, el 85% de la capacidad instalada está basada en células de silicio cristalino, ya que es la tecnología fotovoltaica más desarrollada, con eficiencias de células comerciales alrededor del 17% y que ha demostrado su buen funcionamiento en campo durante más de veinticinco años. Debido a estos altos valores de eficiencia, las células de silicio presentan poco margen de mejora, por lo que a la hora de reducir el precio de la electricidad generada con esta tecnología, sólo se puede optar por intentar reducir sus costes de producción. Por ello, con el fin de lograr el objetivo de que en las próximas décadas la electricidad fotovoltaica suponga un porcentaje significativo del suministro eléctrico (del 25% o superior), las células de lámina delgada y las de concentración competirán con las células de silicio cristalino por lograr los precios de generación eléctrica más bajos

    Concentración fotovoltaica

    No full text
    En la última década, la electricidad de origen fotovoltaico ha experimentado un enorme crecimiento a razón de gigavatio por año, demostrando de este modo su potencial para convertirse en una fuente importante de generación eléctrica. Grosso modo, el 85% de la capacidad instalada está basada en células de silicio cristalino, ya que es la tecnología fotovoltaica más desarrollada, con eficiencias de células comerciales alrededor del 17% y que ha demostrado su buen funcionamiento en campo durante más de veinticinco años. Debido a estos altos valores de eficiencia, las células de silicio presentan poco margen de mejora, por lo que a la hora de reducir el precio de la electricidad generada con esta tecnología, sólo se puede optar por intentar reducir sus costes de producción. Por ello, con el fin de lograr el objetivo de que en las próximas décadas la electricidad fotovoltaica suponga un porcentaje significativo del suministro eléctrico (del 25% o superior), las células de lámina delgada y las de concentración competirán con las células de silicio cristalino por lograr los precios de generación eléctrica más bajos
    corecore