36 research outputs found

    Performance Investigation of the Reverse Anoxic/Anaerobic/Oxic Microbial Fuel Cell

    Get PDF
    A reverse anaerobic/anoxic/aerobic (A2O) process is recognized as a developed biological nutrient removal process for wastewater treatment. A few researchers recently integrated a microbial fuel cell (MFC) into an A2O process to generate electricity during wastewater treatment. However, no published studies show the outcome of combining the MFC with the reverse A2O process. The performance of a reverse A2O-MFC during the treatment of raw duck pond water was investigated in this study. For suitable electrode placement, nine patterns of anode and cathode location (CH01-CH09) were also investigated. As a result, 60-79%, 14-52%, 57-82%, and 50-82% of phosphates, nitrates, total ammonia nitrogen, and COD were removed, respectively. Lineweaver-Burk plots could be used to estimate the system's phosphate removal rates. The highest electrical energy was observed at CH05 (162.5 Wh) in the first period of the treatment operation and at CH02 (710.3 Wh) in the second period. The electrode placement patterns of CH05, where the anode and cathode were installed in an anaerobic tank and an oxic tank, and CH02, where the anode and cathode were installed in an anoxic tank and an anaerobic tank, were recommended for the reverse A2O-MFC with a 35-cm electrode distance

    Long-term observed visibility in Eastern Thailand: temporal variation, association with air pollutants and meteorological factors, and trends

    Get PDF
    The present study analyzed long-term observed visibility over Eastern Thailand, with a focus on urbanized/highly industrialized coastal areas. The temporal coverage spans 9 to 35 years for visibility data and 9 to 15 years for air quality data for the selected stations. Visibility shows strong seasonality and its degradation intensifies in the dry season. It shows a negative correspondence with PM10 and relative humidity, which is evident from different methods. Visibility has strong dependence on wind direction, suggesting the influence of local pollution sources. Back-trajectory results suggest important influences of long-range transport and humidity. Secondary aerosol formation has the potential to aggravate visibility based on a precursor-ratio method. The trends in average visibility at most stations in recent years show negative shift, decreasing direction, or persistence of relatively low visibility, possibly due to increase in air pollution. Contrast was found in the meteorologically adjusted trend (based on generalized linear models) in visibility and PM10, which is partly attributed to the role of fine particles. The study suggests that visibility degradation is a problem in Eastern Thailand and is affected by both air pollutants and meteorology. The study hopes to get attention from policymakers regarding issue of visibility degradation in the region

    Emission factors from road dust resuspension in a Mediterranean freeway

    Get PDF
    Particulate matter emissions from paved roads are currently one of the main challenges for a sustainable transport in Europe. Emissions are scarcely estimated due to the lack of knowledge about the resuspension process severely hampering a reliable simulation of PM and heavy metals concentrations in large cities and evaluation of population exposure. In this study the Emission Factors from road dust resuspension on a Mediterranean freeway were estimated per single vehicle category and PM component (OC, EC, mineral dust and metals) by means of the deployment of vertical profiles of passive samplers and terminal concentration estimate. The estimated PM10 emission factors varied from 12 to 47 mg VKT?1 (VKT: Vehicle Kilometer Traveled) with an average value of 22.7 ? 14.2 mg VKT?1. Emission Factors for heavy and light duty vehicles, passenger cars and motorbikes were estimated, based on average fleet composition and EPA ratios, in 187e733 mg VKT?1, 33e131 VKT?1, 9.4e36.9 VKT?1 and 0.8e3.3 VKT?1, respectively. These range of values are lower than previous estimates in Mediterranean urban roads, probably due to the lower dust reservoir on freeways. PM emitted material was dominated by mineral dust (9e10 mg VKT?1), but also OC and EC were found to be major components and approximately 14 e25% and 2e9% of average PM exhaust emissions from diesel passenger cars on highways respectively

    Distinction of Size-Fractionated Road and Roof Dust Based on PAH Contents and Profiles

    No full text

    Study on Characteristics and Simulation of Accumulated Benzo(a)pyrene Loads on Trunk Road

    No full text

    Application of Electrochemical Elution of Iron to Activated Sludge Process

    No full text

    Impact of traffic volumes on levels, patterns, and toxicity of polycyclic aromatic hydrocarbons in roadside soils

    No full text
    Vehicular exhaust is one of the important sources of polycyclic aromatic hydrocarbons (PAHs) in urban areas, and roadside soils can be directly contaminated with PAHs released from traffic emissions. In this study, roadside soils were collected at 10 sites in Ulsan, the largest industrial city in South Korea, to investigate the relationship between the traffic volume and the contamination characteristics of PAHs. The total concentrations of 16 US EPA priority PAHs (Sigma(16) PAHs, mean: 1079 ng g(-1)) and organic-matter-normalized Sigma(16) PAHs (mean: 224 ng g(-1) OM) were positively correlated with traffic volumes (Pearson correlation, r = 0.88 and 0.78, p < 0.01). The levels of carcinogenic PAHs were significantly higher at the high traffic sites than at the low traffic sites. High traffic sites (>25 000 vehicles per day) located at intersections showed elevated concentrations of indicator compounds (e.g., phenanthrene, fluoranthene, pyrene, and benzo[ghi]perylene) for gasoline and diesel exhaust. The diagnostic ratios also suggested a strong influence of the traffic emissions on the roadside soils, not only at urban sites but also at rural ones. Consequently, roadside soils and road dust (which are expected to be much more contaminated with PAHs than roadside soil) can act as important non-point sources of air and water pollution. The cancer risk from exposure to PAHs in the roadside soils was in an acceptable range, but continuous monitoring is required to evaluate the influence of increasing traffic on the environment and human health
    corecore