1,316 research outputs found

    Normal saline resuscitation worsens lactic acidosis in experimental sepsis

    Get PDF
    It is well established that infusing large amounts of normal saline causes hyperchloremic acidosis, yet the clinical relevance of this is unknown.\ud \ud We found that infusion of normal saline, compared with a balanced crystalloid, worsens lactic acidosis in experimental sepsis

    Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality

    Get PDF
    A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2nanoparticles and polymer (PET), and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV) butoxide (Ti(OBu)4) forming nano-TiO2in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites

    Dephosphorylated NSSR1 Is Induced by Androgen in Mouse Epididymis and Phosphorylated NSSR1 Is Increased during Sperm Maturation

    Get PDF
    NSSR1 (Neural salient serine/arginine rich protein 1, alternatively SRp38) is a newly identified RNA splicing factor and predominantly expressed in neural tissues. Here, by Western blot analysis and immunofluorescent staining, we showed that the expression of dephosphorylated NSSR1 increased significantly during development of the caput epididymis. In adult mice, phosphorylated NSSR1 was mainly expressed in the apical side of epithelial cells, and dephosphorylated NSSR1 in caput epididymis was upregulated in a testosterone dependent manner. In addition, subcellular immunoreactive distribution of NSSR1 varied in different regions of the epididymis. With respect to the sperm, phosphorylated NSSR1 was detected in the mid-piece of the tail as well as the acrosome. Furthermore, NSSR1 was released from the sperm head during the capacitation and acrosome reaction. These findings for the first time provide the evidence for the potential roles of NSSR1 in sperm maturation and fertilization

    Neurobiological mechanisms of TENS-induced analgesia

    Get PDF
    Pain inhibition by additional somatosensory input is the rationale for the widespread use of Transcutaneous Electrical Nerve Stimulation (TENS) to relieve pain. Two main types of TENS produce analgesia in animal models: high-frequency (~50–100 Hz) and low-intensity ‘conventional’ TENS, and low-frequency (~2–4 Hz) and highintensity ‘acupuncture-like’ TENS. However, TENS efficacy in human participants is debated, raising the question of whether the analgesic mechanisms identified in animal models are valid in humans. Here, we used a shamcontrolled experimental design to clarify the efficacy and the neurobiological effects of ‘conventional’ and ‘acupuncture-like’ TENS in 80 human volunteers. To test the analgesic effect of TENS we recorded the perceptual and brain responses elicited by radiant heat laser pulses that activate selectively Aδ and C cutaneous nociceptors. To test whether TENS has a long-lasting effect on brain state we recorded spontaneous electrocortical oscillations. The analgesic effect of ‘conventional’ TENS was maximal when nociceptive stimuli were delivered homotopically, to the same hand that received the TENS. In contrast, ‘acupuncture-like’ TENS produced a spatially-diffuse analgesic effect, coupled with long-lasting changes both in the state of the primary sensorimotor cortex (S1/ M1) and in the functional connectivity between S1/M1 and the medial prefrontal cortex, a core region in the descending pain inhibitory system. These results demonstrate that ‘conventional’ and ‘acupuncture-like’ TENS have different analgesic effects, which are mediated by different neurobiological mechanisms

    Imaging the homogeneous nucleation during the melting of superheated colloidal crystals

    Get PDF
    The nucleation process is crucial to many phase transitions, but its kinetics are difficult to predict and measure. We superheated and melted the interior of thermal-sensitive colloidal crystals and investigated by means of video microscopy the homogeneous melting at single-particle resolution. The observed nucleation precursor was local particle-exchange loops surrounded by particles with large displacement amplitudes rather than any defects. The critical size, incubation time, and shape and size evolutions of the nucleus were measured. They deviate from the classical nucleation theory under strong superheating, mainly because of the coalescence of nuclei. The superheat limit agrees with the measured Born and Lindemann instabilities

    Moiré patterns observed in bi layer graphene irradiated with high energetic protons

    Get PDF
    Customarily, it is likely that irradiated graphene yield indication of per- turbations induced by irradiation. High Resolution Transmission Electron Micros- copy (HRTEM) analysis has been performed on proton irradiated graphene. The analysis indicates the existence of Moiré patterns produced by the rotations induced by the irradiation in between planes. The rotations measured fluctuate between 3 and 5 degrees respectively. These rotations may influence the electronic properties of the material under investigation. In order to explain the observed rotations in between planes, theoretical analysis were performed under the scheme of extended Hückel tight-binding method. Average total energy of the system was careful ana- lyzed throughout the experiment composed of two graphene layers with two carbon vacancies and then the replaced carbons were intercalated in between the two lay- ers. The results obtained indicate that the system remain semi metallic. Moreover, the theoretical results yielded that the 3 degree rotation is favored, although the 5 degree rotation is not discarded. Furthermore, energy bands as well as total and projected DOS were performed in order to provide more information about the electronic changes induced by the rotations applied to the system

    Ensemble Models of Neutrophil Trafficking in Severe Sepsis

    Get PDF
    A hallmark of severe sepsis is systemic inflammation which activates leukocytes and can result in their misdirection. This leads to both impaired migration to the locus of infection and increased infiltration into healthy tissues. In order to better understand the pathophysiologic mechanisms involved, we developed a coarse-grained phenomenological model of the acute inflammatory response in CLP (cecal ligation and puncture)-induced sepsis in rats. This model incorporates distinct neutrophil kinetic responses to the inflammatory stimulus and the dynamic interactions between components of a compartmentalized inflammatory response. Ensembles of model parameter sets consistent with experimental observations were statistically generated using a Markov-Chain Monte Carlo sampling. Prediction uncertainty in the model states was quantified over the resulting ensemble parameter sets. Forward simulation of the parameter ensembles successfully captured experimental features and predicted that systemically activated circulating neutrophils display impaired migration to the tissue and neutrophil sequestration in the lung, consequently contributing to tissue damage and mortality. Principal component and multiple regression analyses of the parameter ensembles estimated from survivor and non-survivor cohorts provide insight into pathologic mechanisms dictating outcome in sepsis. Furthermore, the model was extended to incorporate hypothetical mechanisms by which immune modulation using extracorporeal blood purification results in improved outcome in septic rats. Simulations identified a sub-population (about of the treated population) that benefited from blood purification. Survivors displayed enhanced neutrophil migration to tissue and reduced sequestration of lung neutrophils, contributing to improved outcome. The model ensemble presented herein provides a platform for generating and testing hypotheses in silico, as well as motivating further experimental studies to advance understanding of the complex biological response to severe infection, a problem of growing magnitude in humans

    Optimal Glycated Hemoglobin Cutoff for Diagnosis of Diabetes and Prediabetes in Chinese Breast Cancer Women

    Get PDF
    Xin-Yu Liang,1,&ast; Li-yuan Mu,1,&ast; Lei Hu,2,&ast; Rui-ling She,1,&ast; Chen-yu Ma,1,&ast; Jun-han Feng,1,&ast; Zhi-yu Jiang,1 Zhao-xing Li,1 Xiu-quan Qu,1 Bai-qing Peng,1 Kai-nan Wu,1 Ling-quan Kong1 1Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China; 2Information Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China&ast;These authors contributed equally to this workCorrespondence: Ling-quan Kong, Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China, Tel +8613101380893, Email [email protected]: Glycated hemoglobin (HbA1c) is widely used in diabetes management and now recommended for diagnosis and risk assessment. Our research focused on investigating the optimal cutoff points of HbA1c for diagnosis of diabetes and prediabetes in Chinese breast cancer women, aiming to enhance early detection and tailor treatment strategies.Patients and Methods: This study involved 309 breast cancer women without diabetes history in China. Patients were categorized into groups of newly diagnosed diabetes, prediabetes, and normal glucose tolerance using oral glucose tolerance test (OGTT) according to the 2010 ADA criteria. HbA1c data were collected from all patients. Receiver operating characteristic (ROC) curve analysis was used to assess the effectiveness of the HbA1c screening.Results: Among the 309 breast cancer women without diabetes history, 96 (31.0%) were identified with diabetes and 130 (42.1%) had prediabetes according to OGTT, and the incidence of normal glucose tolerance was only 26.9% (83). ROC curve analysis, using OGTT as a reference, revealed that the area under the curve of 0.903 (P< 0.001, 95% CI, 0.867– 0.938) for HbA1c alone, indicating high accuracy. The optimal HbA1c cutoff for identifying diabetes was determined to be 6.0%, with a sensitivity of 78.1% and specificity of 86.4%. For prediabetes, the ROC curve for HbA1c alone showed that the area under the ROC curve of 0.703 (P< 0.001, 95% CI, 0.632– 0.774), with an optimal cutoff of 5.5% (sensitivity of 76.9% and specificity of 51.8%).Conclusion: The prevalence of undiagnosed diabetes is very high in breast cancer women without diabetes history in China. The optimal cutoff points of HbA1c for identifying diabetes and prediabetes are 6.0% and 5.5% in Chinese breast cancer women, respectively.Keywords: breast cancer, diabetes, HbA1c, prediabete
    corecore