16 research outputs found

    Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in Dioscorea zingiberensis suspension cell and seedling cultures

    Get PDF
    Background: Three oligosaccharides (EOS, WOS and SOS) were respectively prepared from the corresponding polysaccharides, namely exopolysaccharide (EPS), water-extracted mycelial polysaccharide (WPS) and sodium hydroxide-extracted mycelial polysaccharides (SPS) from the endophytic fungus Fusarium oxysporum Dzf17. In this study, the effects of EOS,WOS and SOS on the activities of the defense-related enzymes, namely phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO) and peroxidase (POD) in its host plant Dioscorea zingiberensis cultures were investigated. Results: For the suspension cell cultures of D. zingiberensis, the highest PAL activity was induced by 0.5 mg/mL of WOS at 48 h after treatment, which was 4.55-fold as that of control. Both PPO and POD activities were increased to themaximumvalues by 0.25 mg/mL ofWOS at 48 h after treatment,whichwere respectively 3.74 and 3.45-fold as those of control. For the seedling cultures, the highest PAL activity was elicited by 2.5 mg/mL of EOS at 48 h after treatment, which was 3.62-fold as that of control. Both PPO and POD reached theirmaximum values treatedwith 2.5 mg/mL ofWOS at 48 h after treatment, whichwere 4.61 and 4.19-fold as those of control, separately. Conclusions: Both EOS and WOS significantly increased the activities of PAL, PPO and POD in the suspension cell and seedling cultures of D. zingiberensis. The results suggested that the oligosaccharides from the endophytic fungus F. oxysporum Dzf17 may be related to the activation and enhancement of the defensivemechanisms of D. zingiberensis suspension cell and seedling cultures

    Enhancement of Diosgenin Production in Dioscorea zingiberensis Cell Cultures by Oligosaccharides from Its Endophytic Fungus Fusarium oxysporum Dzf17

    No full text
    The effects of the oligosaccharides from the endophytic fungus Fusarium oxysporum Dzf17 as elicitors on diosgenin production in cell suspension cultures of its host Dioscorea zingiberensis were investigated. Three oligosaccharides, DP4, DP7 and DP10, were purified from the oligosaccharide fractions DP2-5, DP5-8 and DP8-12, respectively, which were prepared from the water-extracted mycelial polysaccharide of the endophytic fungus F. oxysporum Dzf17. When the cell cultures were treated with fraction DP5-8 at 20 mg/L on day 26 and harvested on day 32, the maximum diosgenin yield (2.187 mg/L) was achieved, which was 5.65-fold of control (0.387 mg/L). When oligosaccharides DP4, DP7 and DP10 were individually added to 26-day-old D. zingiberensis cell cultures at concentrations of 2, 4, 6, 8 and 10 mg/L in medium, DP7 at 6 mg/L was found to significantly enhance diosgenin production, with a yield of 3.202 mg/L, which was 8.27-fold of control. When the cell cultures were treated with DP7 twice on days 24 and 26, and harvested on day 30, both diosgenin content and yield were significantly increased and reached the maximums of 1.159 mg/g dw and 4.843 mg/L, both of which were higher than those of single elicitation, and were 9.19- and 12.38-fold of control, respectively

    Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in Dioscorea zingiberensis suspension cell and seedling cultures

    Get PDF
    Background: Three oligosaccharides (EOS, WOS and SOS) were respectively prepared from the corresponding polysaccharides, namely exopolysaccharide (EPS), water-extracted mycelial polysaccharide (WPS) and sodium hydroxide-extracted mycelial polysaccharides (SPS) from the endophytic fungus Fusarium oxysporum Dzf17. In this study, the effects of EOS, WOS and SOS on the activities of the defense-related enzymes, namely phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO) and peroxidase (POD) in its host plant Dioscorea zingiberensis cultures were investigated. Results: For the suspension cell cultures of D. zingiberensis, the highest PAL activity was induced by 0.5 mg/mL of WOS at 48 h after treatment, which was 4.55-fold as that of control. Both PPO and POD activities were increased to the maximum values by 0.25 mg/mL of WOS at 48 h after treatment, which were respectively 3.74 and 3.45-fold as those of control. For the seedling cultures, the highest PAL activity was elicited by 2.5 mg/mL of EOS at 48 h after treatment, which was 3.62-fold as that of control. Both PPO and POD reached their maximum values treated with 2.5 mg/mL of WOS at 48 h after treatment, which were 4.61 and 4.19-fold as those of control, separately. Conclusions: Both EOS and WOS significantly increased the activities of PAL, PPO and POD in the suspension cell and seedling cultures of D. zingiberensis. The results suggested that the oligosaccharides from the endophytic fungus F. oxysporum Dzf17 may be related to the activation and enhancement of the defensive mechanisms of D. zingiberensis suspension cell and seedling cultures

    Medium Optimization for Exopolysaccharide Production in Liquid Culture of Endophytic Fungus Berkleasmium sp. Dzf12

    Get PDF
    Abstract: Berkleasmium sp. Dzf12, an endophytic fungus from Dioscorea zingiberensis, is a high producer of spirobisnaphthalenes with various bioactivities. The exopolysaccharide (EPS) produced by this fungus also shows excellent antioxidant activity. In this study, the experimental designs based on statistics were employed to evaluate and optimize the medium for EPS production in liquid culture of Berkleasmium sp. Dzf12. For increasing EPS yield, the concentrations of glucose, peptone, KH2PO4, MgSO4·7H2O and FeSO4·7H2O in medium were optimized using response surface methodology (RSM). Both the fractional factorial design (FFD) and central composite design (CCD) were applied to optimize the main factors which significantly affected EPS production. The concentrations of glucose, peptone and MgSO4·7H2O were found to be the main effective factors for EPS production by FFD experimental analysis. Based on the further CCD optimization and RSM analysis, a quadratic polynomial regression equation was derived from the EPS yield and three variables. Statistical analysis showed the polynomial regression model was in good agreement with the experimental results with the determination coefficient (adj-R 2) as 0.9434. By solving the quadratic regression equation, the optimal concentrations of glucose

    Enhancement of Palmarumycin C12 and C13 Production in Liquid Culture of the Endophytic Fungus Berkleasmium sp. Dzf12 by Oligosaccharides from Its Host Plant Dioscorea zingiberensis

    No full text
    Three crude oligosaccharides were respectively prepared by acid hydrolysis of three polysaccharides, which were water-extracted polysaccharide (WEP), sodium hydroxide-extracted polysaccharide (SEP) and acid-extracted polysaccharide (AEP) from the rhizomes of Dioscorea zingiberensis. Among the three oligosaccharides, the crude oligosaccharide prepared by acid hydrolysis of WEP was found to be the most efficient elicitor to enhance the production of palmarumycins C12 and C13 in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. When OW was applied to the medium at 300 mg/L on day 3 of culture, the maximal yields of palmarumycin C12 (87.96 mg/L) and palmarumycin C13 (422.28 mg/L) were achieved on day 15 of culture, which were 9.83 and 3.24-fold in comparison with those (8.95 and 130.43 mg/L) of control, respectively. The results indicate that addition of the oligosaccharides from the host plant D. zingiberensis should be an effective strategy for enhancing production of palmarumycins C12 and C13 in liquid culture of endophytic fungus Berkleasmium sp. Dzf12

    Blending Advertising with Organic Content in E-commerce via Virtual Bids

    No full text
    It has become increasingly common that sponsored content (i.e., paid ads) and non-sponsored content are jointly displayed to users, especially on e-commerce platforms. Thus, both of these contents may interact together to influence their engagement behaviors. In general, sponsored content helps brands achieve their marketing goals and provides ad revenue to the platforms. In contrast, non-sponsored content contributes to the long-term health of the platform through increasing users' engagement. A key conundrum to platforms is learning how to blend both of these contents allowing their interactions to be considered and balancing these business objectives. This paper proposes a system built for this purpose and applied to product detail pages of JD.COM, an e-commerce company. This system achieves three objectives: (a) Optimization of competing business objectives via Virtual Bids allowing the expressiveness of the valuation of the platform for these objectives. (b) Modeling the users' click behaviors considering explicitly the influence exerted by the sponsored and non-sponsored content displayed alongside through a deep learning approach. (c) Consideration of a Vickrey-Clarke-Groves (VCG) Auction design compatible with the allocation of ads and its induced externalities. Experiments are presented demonstrating the performance of the proposed system. Moreover, our approach is fully deployed and serves all traffic through JD.COM's mobile application
    corecore