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Background: Three oligosaccharides (EOS, WOS and SOS) were respectively prepared from the corresponding
polysaccharides, namely exopolysaccharide (EPS), water-extracted mycelial polysaccharide (WPS) and sodium
hydroxide-extracted mycelial polysaccharides (SPS) from the endophytic fungus Fusarium oxysporum Dzf17. In
this study, the effects of EOS, WOS and SOS on the activities of the defense-related enzymes, namely phenylalanine
ammonia lyase (PAL), polyphenoloxidase (PPO) and peroxidase (POD) in its host plant Dioscorea zingiberensis
cultures were investigated.
Results: For the suspension cell cultures of D. zingiberensis, the highest PAL activity was induced by 0.5 mg/mL
ofWOS at 48 h after treatment, which was 4.55-fold as that of control. Both PPO and POD activities were increased
to themaximum values by 0.25 mg/mL ofWOS at 48 h after treatment, whichwere respectively 3.74 and 3.45-fold
as those of control. For the seedling cultures, the highest PAL activity was elicited by 2.5 mg/mL of EOS at 48 h after

treatment, which was 3.62-fold as that of control. Both PPO and POD reached their maximum values treated with
2.5 mg/mL of WOS at 48 h after treatment, which were 4.61 and 4.19-fold as those of control, separately.
Conclusions: Both EOS andWOS significantly increased the activities of PAL, PPO and POD in the suspension cell and
seedling cultures of D. zingiberensis. The results suggested that the oligosaccharides from the endophytic fungus F.
oxysporumDzf17may be related to the activation and enhancement of the defensivemechanisms ofD. zingiberensis
suspension cell and seedling cultures.
© 2014 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Plants exhibit constitutive and inducible defenses against pathogen
attacks. Differential responses of plants to the pathogens have been
found in many plant–pathogen interactions, which led to an initiation
of complex defense signal transductions in plant cells. The natural
resistance of plants to diseases is based not only on preformed defenses,
but also on induced mechanisms [1]. Most plants have developed a
variety of inducible defense mechanisms against diverse biotic and
abiotic stresses, such as cell wall reinforcement by deposition of lignin,
d Católica de Valparaíso.
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necrotic hypersensitive response, biosynthesis of phytoalexins and
pathogenesis-related proteins [2,3,4]. An apparently ubiquitous feature
of plant defensive response to pathogen attack is the induction of
defense-related enzymes such as phenylalanine ammonia lyase (PAL),
polyphenoloxidase (PPO), peroxidase (POD), glucanase, and chitinase
[5,6]. PAL has been considered as the key enzyme of phenylpropanoid
metabolism which consists with a range of defensive roles for
phenylpropanoids [7,8]. PPO, which is widely distributed in plants, can
oxidize monophenol, diphenol or trihydric to their corresponding
quinines with great toxicity to pathogen [9]. POD can assist
superoxide dismutase (SOD) and catalase (CAT) to scavenge the
excessive superoxide radical (O2

-), hydrogen peroxide (H2O2) and
hydroxyl radical (•OH) in plant cells, which could ensure plant
healthy growth [10].

The earliest described elicitor for inducing phytoalexin
biosynthesis was an oligosaccharide from the cell walls of the
soybean pathogen Phytophthora sojae [11]. Since then, more and
more elicitors including live microorganisms, fragments of cell
walls, crude extracts of mycelia, polysaccharides, oligosaccharides
sevier B.V. All rights reserved.
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and proteins, have been reported from the pathogens or
non-pathogens to activate plant disease resistance [10,12,13]. Plant
endophytes residing in the internal organs or tissues of healthy
plants cause no disease symptoms on their host plants [14,15].
In recent years, more and more attentions have been paid to
endophytic fungi because of their important functions, such as
producing important and novel natural bioactive compounds,
modulating plant growth, improving plant resistance to stress, and
enhancing biosynthesis of plant secondary metabolites
[16,17,18,19,20,21]. During the long period of co-evolution, a friendly
relationship has been gradually set up between each endophytic
fungus and its host plant. It is possible that some components from
the endophyte might be used as the elicitors to induce disease
resistance of its host plant [22].

Fusarium oxysporum Dzf17 was an endophytic fungus isolated from
the healthy rhizomes of Dioscorea zingiberensis (Dioscoreaceae), a
Chinese medicinal herb [23,24]. In our previous studies, three
polysaccharideswere prepared from this fungus,whichwere respectively
exopolysaccharide (EPS),water-extractedmycelial polysaccharide (WPS)
and sodium hydroxide-extracted mycelial polysaccharides (SPS), and
their enhancement effects on growth and diosgenin accumulation in the
suspension cell and seedling cultures of D. zingiberensis were observed
[25]. The oligosaccharides, which were further prepared from the above
polysaccharides, also showed improving growth and stimulating
diosgenin accumulation in D. zingiberensis suspension cells [26].
Moreover, excellent in vitro antioxidant activities of the three
polysaccharides from F. oxysporum Dzf17 were also observed [27]. It has
well demonstrated that the polysaccharides or oligosaccharides from
fungi were in favor of induction of plant defensive responses [28,29]. In
the present study, we aim to investigate the effects of the oligosaccharide
elicitors from F. oxysporum Dzf17 on the activities of the defense-related
enzymes in the suspension cell and seedling cultures of its host plant
D. zingiberensis. The defense-related enzymes studied in this work
included PAL, PPO and POD. By investigating the effects of oligosaccharide
elicitors from plant endophyte on the defensive system of its host plant, it
will provide more information for further understanding the interactions
between endophytic F. oxysporum Dzf17 and its host D. zingiberensis.

2. Materials and methods

2.1. Plant materials

The D. zingiberensis root explants were employed to induce callus
according to the method in our previous study [23]. The induced calli
were subcultured in darkness at an interval of 30 d on Murashige
and Skoog (MS) medium, which contained naphthalene acetic
acid (1.0 mg/L) and 6-benzyladenine (1.5 mg/L) [25]. To obtain the
suspension cell cultures of D. zingiberensis, the calli were cultured on
the above medium without agar at 25°C in darkness on a rotary shaker
at 120 rpm, all of which were carried out in 125-mL Erlenmeyer flasks.

D. zingiberensis seedlings were initially acquired by redifferentiation
of calli on solid MS medium containing kinetin (2.0 mg/L) and
6-benzyladenine (5.0 mg/L) at 25°C under 12 h daily illumination of
approximately 2000 lx. The seedlings were then subcultured on solid
hormone-free MS medium at 25°C under 12 h daily illumination at an
interval of 30 d [30]. After the seedlings were subcultured for five
generations in 125-mL Erlenmeyer flasks, they were used as the
materials in the following elicitation experiments.

2.2. Preparation of oligosaccharides from F. oxysporum Dzf17

The endophytic fungus F. oxysporum Dzf17 (GenBank accession
number as EU543260) was isolated from the healthy rhizomes of
D. zingiberensis as described in the previous report [24]. F. oxysporum
Dzf17 was cultured in the liquid medium (300 mL) in each 1000-mL
Erlenmeyer flask, which consisted of glucose (50 g/L), peptone (13 g/L),
NaCl (0.6 g/L), K2HPO4 (0.6 g/L), and MgSO4·7H2O (0.2 g/L). When the
flasks were kept on a rotary shaker in darkness at 150 rpm and 25°C for
14 d, the fermented broth (150 L) were collected and then centrifuged
at 7741 x g for 20 min. The supernatant was employed to prepare
exopolysaccharide. The mycelia were washed twice with deionized
water and then lyophilized. About 600 g of the dry mycelia was gained
for mycelial polysaccharide preparation.

Three polysaccharides, namely exopolysaccharide (EPS),
water-extracted mycelial polysaccharide (WPS) and sodium
hydroxide-extracted mycelial polysaccharide (SPS) were respectively
prepared from endophytic F. oxysporum Dzf17 in our previous
study [25]. Three crude oligosaccharides (i.e., EOS, WOS and SOS)
were respectively prepared by hydrolysis of their corresponding
polysaccharides (i.e., EPS, WPS and SPS) with 2.17 mol/L of
trifluoroacetic acid (TFA) at 85°C for 4 h according to the method of
Li et al. [26]. The acid hydrolyte of each polysaccharide was filtrated.
And then, an appropriate volume of methanol was added into the
filtrate to form an azeotrope with TFA, which eliminated the residual
TFA by evaporation under vacuum. By TLC detection, the crude
oligosaccharide contained a series of oligosaccharide monomers with
their degrees of polymerization ranged from 5 to 12. Furthermore, the
carbohydrate content of each crude oligosaccharide or polysaccharide
was respectively evaluated by the method of anthrone-sulfuric acid
spectrophotography using glucose as a reference [31].

2.3. Application of oligosaccharides in D. zingiberensis cultures

Crude oligosaccharides EOS, WOS and SOS were respectively
dissolved in sterile distilled water as the stock solutions, and then
filtered through a sterile filter membrane (pore size, 0.45 μm). The
oligosaccharide solution was diluted as 0.5, 2.5 and 5.0 mg/mL with
sterile distilled water.

For D. zingiberensis suspension cell cultures, each 125-mL flask
was filled with 30 mL liquid medium with 0.3 g of fresh cell cultures
as the inoculum.When the suspension cell cultures were cultured for
20 d, 3 mL oligosaccharide elicitor solution (0.5, 2.5 and 5.0 mg/mL)
was separately added. Thus the final concentrations of the
oligosaccharide elicitor in medium were 0.05, 0.25 and 0.50 mg/mL
of carbohydrate equivalent. Addition of 3 mL sterile distilled water was
used as control. The treated suspension cell cultures were respectively
harvested at 12, 24, 48, 72 and 96 h after elicitation, and then collected
by vacuum filtration. The obtained fresh cell cultures were immediately
used for extraction of the crude defense-related enzymes. Each
treatment was carried out in triplicate.

The 20-d-old seedlings were placed in a 125-mL flask containing
20 mL oligosaccharide solution (0.5, 2.5 and 5.0 mg/mL). Each 125-mL
flask was inoculated three seedlings (about 1.0 g fresh weight). The
seedlings immersed in 20 mL sterile distilled water were used as
control. And then the seedlings were placed in the growth chamber at
25°C under 12 h daily illumination of approximately 2000 lx. The
seedlings were respectively harvested at 12, 24, 48, 72 and 96 h after
oligosaccharide addition. Water adhering to the surface of seedlings
was removed by absorbent papers. The harvested fresh seedlings were
immediately used for extraction of crude defense-related enzymes.
Each treatment was carried out in triplicate.

2.4. Extraction and detection of defense-related enzymes

As the activity changes of SOD and CAT were not detected in our
preliminary experiments, just three defense-related enzymes (PAL,
PPO and POD) were selected for further investigation. Each treatment
of the suspension cells or seedlings was respectively subjected to
extraction of PAL, PPO and POD. The PAL extraction and determination
were carried out according to the methods as described previously
with some modifications [32,33]. The harvested suspension cells
or seedlings (0.5 g in fresh weight, fw) were homogenized in
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pre-cooling 5 mL of 0.05 mol/L sodium borate buffer (pH 8.8),
containing 5.0 mmol/L β-mercaptoethanol. The homogenate was
then centrifuged at 12,000 x g for 15 min at 4°C, and the supernatant
was collected as the enzyme extract of PAL. The reaction mixture
consisted of 50 μL enzymatic extract, 100 μL of 0.02 mol/L
L-phenylalanine and 50 μL of 0.05 mol/L sodium borate buffer (pH 8.8).
After incubation at 40°C for 60 min, 50 μL of 2 mol/L HCl was added to
stop the reaction. The absorbance at 290 nm of the reaction mixture
was recorded by micro-plate spectrophotometer. One unit (U) of PAL
activity is defined as a change of 0.01 OD at 290 nm per minute per
gram fresh weight. The results were presented as U/min·g fw.

The crude enzymes of PPO and POD were extracted using the same
methods as described previously with some modifications [34,35]. The
harvested suspension cells or seedlings (0.5 g fw) were homogenized in
pre-cooling 5 mL of 0.05 mol/L sodium phosphate buffer (PBS) (pH 6.8)
containing 1% polyvinyl polypyrrolidone (PVPP). The homogenate was
centrifuged at 12,000 x g for 15 min at 4°C and the supernatant was
used for assay of PPO or POD activities.

The reaction mixture for PPO assay contained 50 μL of enzymatic
solution, 100 μL of 0.05 mol/L catechol and 50 μL of 0.05 mol/L PBS
(pH 8.8), and it wasmonitored bymeasuring the change of absorbance
at 398 nm for 2 min. One unit (U) of PPO activity is defined as a change
of 0.01 OD at 398 nm per minute per gram fresh weight. The results
were presented as U/min·g fw.
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Fig. 1. Effects of oligosaccharides EOS,WOS and SOS on PAL activity in the suspension cells (a, b a
respectively.
For the POD activity assay, 10 μL of crude enzymatic solution
was mixed with 25 μL of 1% guaiacol (w/v), 25 μL of 1% H2O2 (v/v)
and 150 μL of 0.05 mol/L PBS (pH 8.8). After reaction for 10 min at
37°C, the absorbance of the reaction solution at 470 nm was recorded
with a micro-plate spectrophotometer. One unit (U) of PPO activity is
defined as a change of 0.01 OD at 470 nm per minute per gram fresh
weight. The results were presented as U/min·g fw.
3. Results and discussion

3.1. Effects of oligosaccharides on PAL activity

The effects of oligosaccharides EOS, WOS and SOS on the activity of
PAL in D. zingiberensis suspension cells are respectively graphed in
Fig. 1a, b and c. PAL activity in the treated suspension cells varied with
oligosaccharide category, concentration, and time after elicitation. Of the
three oligosaccharides, SOS showed no obvious enhancement of PAL
activity in the suspension cells at all designed concentrations (Fig. 1c).
For EOS, the PAL activity reached the maximum at 48 h after treatment
and then decreased (Fig. 1a). When the suspension cells were treated
with EOS at 0.50 mg/mL, the highest PAL activity was obtained with
the value of 375.33 U/min·g fw, which was 3.32-fold as that of control.
For WOS, the maximum of PAL activity (514.22 U/min·g fw) was
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observed when the suspension cells were treated with 0.50 mg/mL
of WOS and harvested at 48 h after elicitation (Fig. 1b).

PAL activity in the seedlings of D. zingiberensiswas higher than that
in the suspension cells (Fig. 1a, b, and c vs Fig. 1d, e and f). As graphed in
Fig. 1d, EOS exhibited the most significant enhancing effects on PAL
activity when the seedlings were treated with 2.5 mg/mL of EOS and
harvested at 48 h after elicitation. The maximum of PAL activity was
615.33 U/min·g fw which was 3.62-fold as that of control. WOS also
increased PAL activity in the seedlings as shown in Fig. 1e. The
maximum PAL activity (440.78 U/min·g fw) in the seedlings treated
with WOS at 2.5 mg/mL was observed at 72 h after elicitation. For
SOS, no dramatic enhancement of PAL activity was observed as
presented in Fig. 1f.

3.2. Effects of oligosaccharides on PPO activity

The PPO activity was greatly elicited respectively by EOS, WOS and
SOS in D. zingiberensis suspension cells, which is separately graphed
in Fig. 2a, b, and c. When the suspension cells were treated with the
oligosaccharide elicitors, the PPO activity was firstly increased, and
then declined. As shown in Fig. 2a, the highest PPO activities in the
suspension cells were observed respectively treated with 0.05, 0.25
and 0.50 mg/mL of EOS at 24, 48 and 48 h after treatment, which
were respectively 3.00, 3.47 and 2.93-fold as those of control. Thus,
the optimal concentration for EOS to enhance PPO activity was
0.25 mg/mL. For WOS, when it was added at 0.25 mg/mL, PPO activity
reached the maximum at 48 h after elicitation which was 3.74-fold as
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Fig. 2. Effects of oligosaccharides EOS,WOS and SOS on PPO activity in the suspension cells (a, b a
respectively.
that of control (Fig. 2b). As compared with EOS or WOS, SOS exhibited
a weaker enhancing effect on PPO activity (Fig. 2c). The maximum
PPO activity in the suspension cells treated with SOS at 0.50 mg/mL
was obtained at 24 h after elicitation.

The effects of EOS,WOS and SOS on PPO activity in D. zingiberensis
seedlings are respectively shown in Fig. 2d, e and f. As shown in
Fig. 2d, WOS at 2.5 or 5.0 mg/mL showed a stronger effect on PPO
activity than that at 0.5 mg/mL. The highest PPO activity was
observed by 5.0 mg/mL of EOS at 48 h after treatment, which was
2.71-fold as that of control but showed no significant difference to
that at 2.5 mg/mL. Of all treatments, WOS exhibited the most
significant enhancing effects on PPO activity in the seedlings at
2.5 mg/mL and 48 h after elicitation with the maximum PPO activity
which was 4.61-fold as that of control (Fig. 2e). SOS showed no
obvious effects on PPO activity in the seedlings as compared with
that of control (Fig. 2f).

3.3. Effects of oligosaccharides on POD activity

The effects of EOS, WOS and SOS on POD activity in the suspension
cells of D. zingiberensis are presented in Fig. 3a, b and c, respectively.
For EOS, the highest POD activity in the suspension cells was induced
at 0.25 mg/mL and 48 h after elicitation, which was 2.75-fold as that
of control (Fig. 3a). As compared to EOS, WOS exhibited more
significant increasing effects on POD activity under the same conditions
of EOS, which was shown in Fig. 3b. When the suspension cells were
treated with 0.25 mg/mL ofWOS and harvested at 48 h after elicitation,
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themaximumof POD activitywas obtained, whichwas 3.45-fold as that
of control. As graphed in Fig. 3c, SOS showed no dramatic enhancing
effects on POD activity.

In Fig. 3d, EOS increased the POD activity in the seedlings at all
designed concentrations during the period from 12 h to 72 h. When
the seedlings were treated with EOS at 2.5 mg/mL and harvested at
48 h, the highest POD activity was obtained, which was 3.10-fold as
that of control. For WOS, the POD activity in the seedlings showed the
similar variation trend as that of EOS (Fig. 3e). However, the maximum
POD activity elicited by WOS was higher than that of EOS under the
same condition, which was 4.19-fold as that of control. As shown in
Fig. 3f, SOS exhibited no enhancing effects on POD activity in the
seedlings, it even showed inhibitory impacts.

3.4. Concluding remarks

Various fungi-originated products have been demonstrated to
trigger defense mechanisms in plants [36]. Increases of PAL, PPO and
POD activities have been proved to be one of the earliest defensive
responses of plants against fungal stimuli [5,6]. Fungal elicitors,
especially carbohydrate compounds (i.e., polysaccharides and
oligosaccharides), have been frequently reported to induce defensive
responses in plants [37,38]. In the present work, three crude
oligosaccharides (EOS, WOS and SOS) prepared by acid hydrolysis of
their corresponding polysaccharides EPS, WPS and SPS from the
endophytic fungus F. oxysporum Dzf17 were studied for their effects on
the activities of the defense-related enzymes PAL, PPO and POD in the
suspension cell and seedling cultures of its host plant D. zingiberensis.
The activities of PAL, PPO and POD in the suspension cell and seedling
cultures of D. zingiberensis were significantly increased by EOS and
WOS, while the effects of SOS were not desirable. The activities of these
enzymes increased quickly, reached the maximum values, and then
decreased. The activity of each enzyme reached itsmaximumat different
time after oligosaccharide treatment, which was also dependent on
the category and concentration of the added oligosaccharide. The
maximum values of PAL, PPO and POD activities were mostly observed
at 48 h or 72 h after oligosaccharide treatment, which showed significant
enhancements as comparedwith those of control. Enhancements of plant
defense-related enzyme activities by using fungal oligosaccharides have
also been reported previously, but these oligosaccharides were mostly
prepared from plant pathogens [28,29]. It is rarely reported to induce
defense-related enzyme activities in plants by the oligosaccharide
elicitors from endophytic fungi. In this work, the oligosaccharides
from F. oxysporum Dzf17 were observed to increase the activities
of defense-related enzymes in the suspension cell and seedling
cultures of its host D. zingiberensis, which demonstrated their abilities to
activate defensive responses. However, the chemical characterizations
of the oligosaccharides (i.e., purification of oligosaccharide
monomers, monosaccharide composition, monosaccharide linkage
of each oligosaccharide monomer) as well as their structure–activity
relationships and more specific defensive mechanisms are not clear and
worth investigating. In addition, the disease resistance in vivo of the
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plant D. zingiberensis by treatment of these oligosaccharides is also
needed for further research. On the whole, the present work might
be contributed to further understand the interaction between
endophytic F. oxysporum Dzf17 and its host D. zingiberensis. It also
provides an innovative idea for the research and development of
saccharide agrochemicals.
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