3,517 research outputs found
Recommended from our members
Local heating effects on flow and heat transfer in microchannels
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.A series of numerical investigations was conducted to explore the effects of temperature-dependent viscosity and thermal conductivity on two-dimensional low Reynolds number convection of water in microchannels with locally heating. An emphasis was addressed on the fundamental characteristics of flow and thermal re-development at different localized heat fluxes and different inlet temperatures. The velocity
field is highly coupled with temperature distribution and distorted through the variations of viscosity and thermal conductivity. The induced cross-flow velocity has a marked contribution to the convection. The heat transfer enhancement due to viscosity-variation is pronounced, though the axial convection introduced by
thermal-conductivity-variation is insignificant unless for the cases of very low Reynolds numbers. The heat transfer enhancement is described by defining the peak value and location of relative Nusselt number distribution as ΔNu%max and Xmax. Strong nonlinear interaction mechanism prevails in the correlation of ΔNu%max and Xmax due to high heat flux condition and dramatic rise of liquid temperature.This study is supported by the National Natural Science Foundation of China (Grant No. 50636030)
Recommended from our members
Visualization of facet-dependent pseudo-photocatalytic behavior of TiO2 nanorods for water splitting using In situ liquid cell TEM
We report an investigation of the pseudo-photocatalytic behavior of rutile TiO2 nanorods for water splitting observed with liquid cell transmission electron microscopy (TEM). The electron beam serves as a “light” source to initiate the catalytic reaction and a “water-in-salt” aqueous solution is employed as the electrolyte. The observation reveals that bubbles are generated preferentially residing near the {110} facet of a rutile TiO2 nanorod under a low electron dose rate (9.3–18.6 e-/Å2·s). These bubbles are ascribed to hydrogen gas generated from the pseudo-photocatalytic water splitting. As the electron beam current density increases to 93 e-/Å2 ·s, bubbles are also found at the {001} and {111} facets as well as in the bulk liquid solution, demonstrating the dominant effects of water electrolysis by electron beam under higher dose rates. The facet-dependent pseudo-photocatalytic behavior of rutile TiO2 nanorods is further validated using density functional theory (DFT)calculation. Our work establishes a facile liquid cell TEM setup for the study of pseudo-photocatalytic water splitting and it may also be applied to investigation of other photo-activated phenomena occurring at the solid-liquid interfaces
A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf
BACKGROUND: The establishment of C(4 )photosynthesis in maize is associated with differential accumulation of gene transcripts and proteins between bundle sheath and mesophyll photosynthetic cell types. We have physically separated photosynthetic cell types in the leaf blade to characterize differences in gene expression by microarray analysis. Additional control treatments were used to account for transcriptional changes induced by cell preparation treatments. To analyse these data, we have developed a statistical model to compare gene expression values derived from multiple, partially confounded, treatment groups. RESULTS: Differential gene expression in the leaves of wild-type maize seedlings was characterized using the latest release of a maize long-oligonucleotide microarray produced by the Maize Array Project consortium. The complete data set is available through the project web site. Data is also available at the NCBI GEO website, series record GSE3890. Data was analysed with and without consideration of cell preparation associated stress. CONCLUSION: Empirical comparison of the two analyses suggested that consideration of stress helped to reduce the false identification of stress responsive transcripts as cell-type enriched. Using our model including a stress term, we identified 8% of features as differentially expressed between bundle sheath and mesophyll cell types under control of false discovery rate of 5%. An estimate of the overall proportion of differentially accumulating transcripts (1-π(0)) suggested that as many as 18% of the genes may be differentially expressed between B and M. The analytical model presented here is generally applicable to gene expression data and demonstrates the use of statistical elimination of confounding effects such as stress in the context of microarray analysis. We discuss the implications of the high degree of differential transcript accumulation observed with regard to both the establishment and engineering of the C(4 )syndrome
The total synthesis of (-)-cyanthiwigin F by means of double catalytic enantioselective alkylation
Double catalytic enantioselective transformations are powerful synthetic methods that can facilitate the construction of stereochemically complex molecules in a single operation. In addition to generating two or more stereocentres in a single reaction, multiple asymmetric reactions also impart increased enantiomeric excess to the final product in comparison with the analogous single transformation. Furthermore, multiple asymmetric operations have the potential to independently construct several stereocentres at remote points within the same molecular scaffold, rather than relying on pre-existing chiral centres that are proximal to the reactive site. Despite the inherent benefits of multiple catalytic enantioselective reactions, their application to natural product total synthesis remains largely underutilized. Here we report the use of a double stereoablative enantioselective alkylation reaction in a concise synthesis of the marine diterpenoid (-)-cyanthiwigin F (ref. 8). By employing a technique for independent, selective formation of two stereocentres in a single stereoconvergent operation, we demonstrate that a complicated mixture of racemic and meso diastereomers may be smoothly converted to a synthetically useful intermediate with exceptional enantiomeric excess. The stereochemical information generated by means of this catalytic transformation facilitates the easy and rapid completion of the total synthesis of this marine natural product
Experimental demonstration of a hyper-entangled ten-qubit Schr\"odinger cat state
Coherent manipulation of an increasing number of qubits for the generation of
entangled states has been an important goal and benchmark in the emerging field
of quantum information science. The multiparticle entangled states serve as
physical resources for measurement-based quantum computing and high-precision
quantum metrology. However, their experimental preparation has proved extremely
challenging. To date, entangled states up to six, eight atoms, or six photonic
qubits have been demonstrated. Here, by exploiting both the photons'
polarization and momentum degrees of freedom, we report the creation of
hyper-entangled six-, eight-, and ten-qubit Schr\"odinger cat states. We
characterize the cat states by evaluating their fidelities and detecting the
presence of genuine multi-partite entanglement. Small modifications of the
experimental setup will allow the generation of various graph states up to ten
qubits. Our method provides a shortcut to expand the effective Hilbert space,
opening up interesting applications such as quantum-enhanced super-resolving
phase measurement, graph-state generation for anyonic simulation and
topological error correction, and novel tests of nonlocality with
hyper-entanglement.Comment: 11 pages, 5 figures, comments welcom
Topical application of ALA and ALA hexyl ester on a subcutaneous murine mammary adenocarcinoma: tissue distribution
Although 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) has proven to be clinically beneficial for the treatment of certain cancers, including a variety of skin cancers, optimal tissue localisation still remains a problem. An approach to improve the bioavailability of protoporphyrin IX (PpIX) is the use of ALA derivatives instead of ALA. In this work, we employed a subcutaneous murine mammary adenocarcinoma to study the tissue distribution pattern of the ALA hexyl ester (He-ALA) in comparison with ALA after their topical application in different vehicles. He-ALA induced porphyrin synthesis in the skin overlying the tumour (SOT), but it did not reach the tumour tissue as efficiently. Only 5 h after He-ALA lotion application, tumour porphyrin levels surpassed control values. He-ALA delivered in cream induced a substantially lower porphyrin synthesis in SOT, reinforcing the importance of the vehicle in the use of topical PDT. Porphyrin levels in internal organs remained almost within control values when He-ALA was employed. The addition of DMSO to ALA formulation slightly increased tumour and SOT porphyrin biosynthesis, but it did not when added to He-ALA lotion
Observation of eight-photon entanglement
Using ultra-bright sources of pure-state entangled photons from parametric
down conversion, an eight-photon interferometer and post-selection detection,
we demonstrate the ability to experimentally manipulate eight individual
photons and report the creation of an eight-photon Schr\"odinger cat state with
an observed fidelity of .Comment: 6 pages, 4 figure
Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c <i>In Vitro</i>
Background: Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. Methodology/Principal Findings Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. Conclusion/Significance Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion
- …