9 research outputs found

    SHREC2020 track:Multi-domain protein shape retrieval challenge

    Get PDF
    Proteins are natural modular objects usually composed of several domains, each domain bearing a specific function that is mediated through its surface, which is accessible to vicinal molecules. This draws attention to an understudied characteristic of protein structures: surface, that is mostly unexploited by protein structure comparison methods. In the present work, we evaluated the performance of six shape comparison methods, among which three are based on machine learning, to distinguish between 588 multi-domain proteins and to recreate the evolutionary relationships at the proteinand species levels of the SCOPe database. The six groups that participated in the challenge submitted a total of 15 sets of results. We observed that the performance of all the methods significantly decreases at the species level, suggesting that shape-only protein comparison is challenging for closely related proteins. Even if the dataset is limited in size (only 588 proteins are considered whereas more than 160,000 protein structures are experimentally solved), we think that this work provides useful insights into the current shape comparison methods performance, and highlights possible limitations to large-scale applications due to the computational cost

    SHREC 2018 - Protein Shape Retrieval

    Get PDF
    Proteins are macromolecules central to biological processes that display a dynamic and complex surface. They display multiple conformations differing by local (residue side-chain) or global (loop or domain) structural changes which can impact drastically their global and local shape. Since the structure of proteins is linked to their function and the disruption of their interactions can lead to a disease state, it is of major importance to characterize their shape. In the present work, we report the performance in enrichment of six shape-retrieval methods (3D-FusionNet, GSGW, HAPT, DEM, SIWKS and WKS) on a 2 267 protein structures dataset generated for this protein shape retrieval track of SHREC’18

    Autaptic modulation-induced neuronal electrical activities and wave propagation on network under electromagnetic induction

    No full text
    Based on an improved HR neuron model, the effects of electrical and chemical autapses on the firing activities of single neurons are studied, and the wave propagation in forward feedback neural network is also discussed by considering autapstic regulation under different intensities of electromagnetic induction. It is found that the electrical activities of single neuron can be changed by exerting excitatory or inhibitory of electrical and chemical autapses. With different feedback gains of electromagnetic induction current, membrane potential shows the oscillatory solutions and steady states. Under the condition of different autapse or electromagnetic induction, the propagation of electrical activities caused by the central neuron is transformed in the forward feedback network. Moreover, the spatial synchronization of the network will be changed by choosing different coupling intensities and feedback gains. It is proved that the electrical and chemical autapses play a significant role in firing modes of single neuron and the wave propagation of the forward feedback networks under the electromagnetic induction

    Protein Shape Retrieval

    No full text
    Proteins are macromolecules central to biological processes that display a dynamic and complex surface. They display multiple conformations differing by local (residue side-chain) or global (loop or domain) structural changes which can impact drastically their global and local shape. Since the structure of proteins is linked to their function and the disruption of their interactions can lead to a disease state, it is of major importance to characterize their shape. In the present work, we report the performance in enrichment of six shape-retrieval methods (3D-FusionNet, GSGW, HAPT, DEM, SIWKS and WKS) on a 2 267 protein structures dataset generated for this protein shape retrieval track of SHREC'18
    corecore