94 research outputs found
Prevalence of the E321G MYH1 variant for immune-mediated myositis and nonexertional rhabdomyolysis in performance subgroups of American Quarter Horses.
BackgroundImmune-mediated myositis (IMM) in American Quarter Horses (QHs) causes acute muscle atrophy and lymphocytic infiltration of myofibers. Recently, an E321G mutation in a highly conserved region of the myosin heavy chain 1 (MYH1) gene was associated with susceptibility to IMM and nonexertional rhabdomyolysis.ObjectivesTo estimate prevalence of the E321G MYH1 variant in the QH breed and performance subgroups.AnimalsThree-hundred seven elite performance QHs and 146 random registered QH controls.MethodsProspective genetic survey. Elite QHs from barrel racing, cutting, halter, racing, reining, Western Pleasure, and working cow disciplines and randomly selected registered QHs were genotyped for the E321G MYH1 variant and allele frequencies were calculated.ResultsThe E321G MYH1 variant allele frequency was 0.034 ± 0.011 in the general QH population (6.8% of individuals in the breed) and the highest among the reining (0.135 ± 0.040; 24.3% of reiners), working cow (0.085 ± 0.031), and halter (0.080 ± 0.027) performance subgroups. The E321G MYH1 variant was present in cutting (0.044 ± 0.022) and Western Pleasure (0.021 ± 0.015) QHs at lower frequency and was not observed in barrel racing or racing QHs.Conclusions and clinical importanceKnowing that reining and working cow QHs have the highest prevalence of the E321G MYH1 variant and that the variant is more prevalent than the alleles for hereditary equine regional dermal asthenia and hyperkalemic periodic paralysis in the general QH population will guide the use of genetic testing for diagnostic and breeding purposes
Wildlife translocation: the conservation implications of pathogen exposure and genetic heterozygosity
<p>Abstract</p> <p>Background</p> <p>A key challenge for conservation biologists is to determine the most appropriate demographic and genetic management strategies for wildlife populations threatened by disease. We explored this topic by examining whether genetic background and previous pathogen exposure influenced survival of translocated animals when captive-bred and free-ranging bighorn sheep (<it>Ovis canadensis</it>) were used to re-establish a population that had been extirpated in the San Andres Mountains in New Mexico, USA.</p> <p>Results</p> <p>Although the free-ranging source population had significantly higher multi-locus heterozygosity at 30 microsatellite loci than the captive bred animals, neither source population nor genetic background significantly influenced survival or cause of death. The presence of antibodies to a respiratory virus known to cause pneumonia was associated with increased survival, but there was no correlation between genetic heterozygosity and the presence of antibodies to this virus.</p> <p>Conclusions</p> <p>Although genetic theory predicts otherwise, increased heterozygosity was not associated with increased fitness (survival) among translocated animals. While heterosis or genetic rescue effects may occur in F1 and later generations as the two source populations interbreed, we conclude that previous pathogen exposure was a more important marker than genetic heterozygosity for predicting survival of translocated animals. Every wildlife translocation is an experiment, and whenever possible, translocations should be designed and evaluated to test hypotheses that will further improve our understanding of how pathogen exposure and genetic variability influence fitness.</p
Frameshift Variant in MFSD12 Explains the Mushroom Coat Color Dilution in Shetland Ponies
Mushroom is a unique coat color phenotype in Shetland Ponies characterized by the dilution of the chestnut coat color to a sepia tone and is hypothesized to be a recessive trait. A genome wide association study (GWAS), utilizing the Affymetrix 670K array (MNEc670k) and a single locus mixed linear model analysis (EMMAX), identified a locus on ECA7 for further investigation (Pcorrected = 2.08 × 10−10). This locus contained a 3 Mb run of homozygosity in the 12 mushroom ponies tested. Analysis of high throughput Illumina sequencing data from one mushroom Shetland pony compared to 87 genomes from horses of various breeds, uncovered a frameshift variant, p.Asp201fs, in the MFSD12 gene encoding the major facilitator superfamily domain containing 12 protein. This variant was perfectly concordant with phenotype in 96 Shetland Ponies (P = 1.15 × 10−22), was identified in the closely related Miniature Horse for which the mushroom phenotype is suspected to occur (fmu = 0.02), and was absent in 252 individuals from seven additional breeds not reported to have the mushroom phenotype. MFSD12 is highly expressed in melanocytes and variants in this gene in humans, mice, and dogs impact pigmentation. Given the role of MFSD12 in melanogenesis, we propose that p.Asp201fs is causal for the dilution observed in mushroom ponies
Dual origins of dairy cattle farming - evidence from a comprehensive survey of European Y-chromosomal variation
BACKGROUND: Diversity patterns of livestock species are informative to the history of agriculture and indicate uniqueness of breeds as relevant for conservation. So far, most studies on cattle have focused on mitochondrial and autosomal DNA variation. Previous studies of Y-chromosomal variation, with limited breed panels, identified two Bos taurus (taurine) haplogroups (Y1 and Y2; both composed of several haplotypes) and one Bos indicus (indicine/zebu) haplogroup (Y3), as well as a strong phylogeographic structuring of paternal lineages. METHODOLOGY AND PRINCIPAL FINDINGS: Haplogroup data were collected for 2087 animals from 138 breeds. For 111 breeds, these were resolved further by genotyping microsatellites INRA189 (10 alleles) and BM861 (2 alleles). European cattle carry exclusively taurine haplotypes, with the zebu Y-chromosomes having appreciable frequencies in Southwest Asian populations. Y1 is predominant in northern and north-western Europe, but is also observed in several Iberian breeds, as well as in Southwest Asia. A single Y1 haplotype is predominant in north-central Europe and a single Y2 haplotype in central Europe. In contrast, we found both Y1 and Y2 haplotypes in Britain, the Nordic region and Russia, with the highest Y-chromosomal diversity seen in the Iberian Peninsula. CONCLUSIONS: We propose that the homogeneous Y1 and Y2 regions reflect founder effects associated with the development and expansion of two groups of dairy cattle, the pied or red breeds from the North Sea and Baltic coasts and the spotted, yellow or brown breeds from Switzerland, respectively. The present Y1-Y2 contrast in central Europe coincides with historic, linguistic, religious and cultural boundaries.Penedo,
Lenstra mail
An Intronic MBTPS2 Variant Results in a Splicing Defect in Horses with Brindle Coat Texture
We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed "brindle" by horse breeders. We propose the term "brindle 1 (BR1)" for this specific form of brindle. In some BR1 horses the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semi-dominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of 4 BR1 and 60 non-brindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBPTS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBPTS2 transcripts in skin and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBPTS2:c1437+4T>C variant showed perfect co-segregation with the brindle phenotype in the investigated family and was absent from 457 control horses of diverse breeds. Altogether, our genetic data and the previous knowledge on MBTPS2 function in the skin suggest that the identified MBTPS2 intronic variant leads to partial exon skipping and causes the BR1 phenotype in horses
Genetic Footprints of Iberian Cattle in America 500 Years after the Arrival of Columbus
Background: American Creole cattle presumably descend from animals imported from the Iberian Peninsula during the period of
colonization and settlement, through different migration routes, andmay have also suffered the influence of cattle directly imported
from Africa. The introduction of European cattle, which began in the 18th century, and later of Zebu from India, has threatened the
survival of Creole populations, some of which have nearly disappeared or were admixed with exotic breeds. Assessment of the
genetic status of Creole cattle is essential for the establishment of conservation programs of these historical resources.
Methodology/Principal Findings: We sampled 27 Creole populations, 39 Iberian, 9 European and 6 Zebu breeds. We used
microsatellite markers to assess the origins of Creole cattle, and to investigate the influence of different breeds on their
genetic make-up. The major ancestral contributions are from breeds of southern Spain and Portugal, in agreement with the
historical ports of departure of ships sailing towards the Western Hemisphere. This Iberian contribution to Creoles may also
include some African influence, given the influential role that African cattle have had in the development of Iberian breeds,
but the possibility of a direct influence on Creoles of African cattle imported to America can not be discarded. In addition to
the Iberian influence, the admixture with other European breeds was minor. The Creoles from tropical areas, especially
those from the Caribbean, show clear signs of admixture with Zebu.
Conclusions/Significance: Nearly five centuries since cattle were first brought to the Americas, Creoles still show a strong
and predominant signature of their Iberian ancestors. Creole breeds differ widely from each other, both in genetic structure
and influences from other breeds. Efforts are needed to avoid their extinction or further genetic erosion, which would
compromise centuries of selective adaptation to a wide range of environmental condition
Genetic diversity in the modern horse illustrated from genome-wide SNP data
Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection
Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data
Horses were domesticated from the Eurasian steppes 5,000–6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection
Author Correction: The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers
An amendment to this paper has been published and can be accessed via a link at the top of the paper.Enmienda al artículo citado, que puede accederse haciendo clic en "Documentos relacionados".Facultad de Ciencias Veterinaria
- …