208 research outputs found

    Ruins of (European) Modernity

    Get PDF
    A review of Julia Hell and Andreas Schonle (eds), Ruins of Modernity (Duke, 2010)

    Return to Battleship Island

    Get PDF
    No abstract available

    Return to Battleship Island

    Get PDF
    No abstract available

    Object recognition and pose estimation of planar objects from range data

    Get PDF
    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise

    Uncertainty in pore size distribution derived from adsorption isotherms: I. classical methods

    Get PDF
    Procedures for propagation of uncertainty in pore size distribution calculation based on classical methods for both micro and mesoporous materials are described. Uncertainty in experimental adsorption isotherm data and uncertainty in temperature are introduced as the main sources for uncertainty in height and position of peaks of PSD determined via classical mesopore size distribution determination method. Uncertainty in PSD derived from classical micropore size distribution methods mainly arises from uncertainty in experimental isotherm data. Calculation step size is shown to have some effects on magnitude of uncertainty in micropore calculation. Micropore size distribution calculations are also highly sensitive to the adsorptive molecular diameter

    Uncertainty in pore size distribution derived from adsorption isotherms: II. adsorption integral approach

    Get PDF
    Uncertainty in the amount adsorbed in manometric adsorption isotherm measurements is well established. Here, we extend uncertainty methodologies from adsorption isotherm data uncertainty and apply them to calculate pore size distributions based on adsorption integral methods. The analyses consider as variables: uncertainty in adsorption isotherm data, regularization parameter, molecular potential model, and the number of single pore isotherms calculated with an associated quadrature interval. We demonstrate how the calculated pore size distribution is quite insensitive to the uncertainty in experimental data, but in contrast, the uncertainty in the experimental data affects the calculated value of the optimized regularization parameter which, in turn, leads to considerable variation in the calculated pore size distribution. The calculated pore size distribution is also shown to be highly dependent on the potential model selected and on the number of single pore isotherms applied to the inversion process. We conclude and suggest a quantitative comparison between calculated pore size distributions should be discouraged unless the uncertainty in the experimental data is relatively small and, default values for regularization parameters, potential models, the number of single pore isotherms and their distribution are exactly the same for each pore size distribution evaluation

    Vibration Isolation for Launch of a Space Station Orbital Replacement Unit

    Get PDF
    Delivery of Orbital Replacement Units (ORUs) to on-orbit destinations such a the International Space Station (ISS) and the Hubble Space Telescope is an important component of the space program. ORUs are integrated on orbit with space assets to maintain and upgrade functionality. For ORUs comprised of sensitive equipment, the dynamic launch environment drives design and testing requirements, and high frequency random vibrations are generally the cause for failure. Vibration isolation can mitigate the structure-borne vibration environment during launch, and hardware has been developed that can provide a reduced environment for current and future launch environments. Random vibration testing of one ORU to equivalent Space Shuttle launch levels revealed that its qualification and acceptance requirements were exceeded. An isolation system was designed to mitigate the structure-borne launch vibration environment. To protect this ORU, the random vibration levels at 50 Hz must be attenuated by a factor of two and those at higher frequencies even more. Design load factors for Shuttle launch are high, so a metallic load path is needed to maintain strength margins. Isolation system design was performed using a finite element model of the ORU on its carrier with representative disturbance inputs. Iterations on the modelled to an optimized design based on flight proven SoftRide MultiFlex isolators. Component testing has been performed on prototype isolators to validate analytical predictions

    FiberGLAST: a scintillating fiber approach to the GLAST mission

    Get PDF
    FiberGLAST is a scintillating fiber gamma-ray detector designed for the GLAST mission. The system described below provides superior effective area and field of view for modest cost and risk. An overview of the FiberGLAST instrument is presented, as well as a more detailed description of the principle elements of the primary detector volume. The triggering and readout electronics are described, and Monte Carlo Simulations of the instrument performance are presented

    The EX-FRAIL CKD Trial: a study protocol for a pilot randomised controlled trial of a home-based EXercise programme for pre-FRAIL and FRAIL, older adults with Chronic Kidney Disease

    Get PDF
    Introduction Frailty is highly prevalent in adults with chronic kidney disease (CKD) and is associated with adverse health outcomes including falls, poorer health-related quality of life (HRQOL), hospitalisation and mortality. Low physical activity and muscle wasting are important contributors to physical frailty in adults with CKD. Exercise training may improve physical function and frailty status leading to associated improvements in health outcomes, including HRQOL. The EX-FRAIL CKD trial aims to inform the design of a definitive randomised controlled trial (RCT) that investigates the effectiveness of a progressive, multi-component home-based exercise programme in pre-frail and frail older adults with CKD. Methods and Analysis The EX-FRAIL CKD trial is a two-arm parallel group pilot RCT. Participants categorised as pre-frail or frail, following Frailty Phenotype assessment, will be randomised to receive exercise or usual care. Participants randomised to the intervention arm will receive a tailored 12-week exercise programme, which includes weekly telephone calls to advise on exercise progression. Primary feasibility outcome measures include rate of recruitment, intervention adherence, outcome measure completion and participant attrition. Semi-structured interviews with a purposively selected group of participants will inform the feasibility of the randomisation procedures, outcome measures and intervention. Secondary outcome measures include physical function (walking speed and Short Physical Performance Battery), frailty status (Frailty Phenotype), fall concern (Falls Efficacy Scale-International tool), activities of daily living (Barthel Index), symptom-burden (Palliative Care Outcome Scale-Symptoms RENAL) and HRQOL (Short Form-12v2). Ethics and Dissemination Ethical approval was granted by a National Health Service (NHS) Regional Ethics Committee and the NHS Health Research Authority. The study team aim to publish findings in a peer-reviewed journal and present the results at relevant national and international conferences. A summary of findings will be provided to participants, a local kidney patient charity and the funding body
    • ā€¦
    corecore