396 research outputs found

    Meta-analyses of deflazacort versus prednisone/prednisolone in patients with nonsense mutation Duchenne muscular dystrophy

    Get PDF
    Aim: Compare efficacies of deflazacort and prednisone/prednisolone in providing clinically meaningful delays in loss of physical milestones in patients with nonsense mutation Duchenne muscular dystrophy. Materials & methods: Placebo data from Phase IIb (ClinicalTrials.gov Identifier: NCT00592553) and ACT DMD (ClinicalTrials.gov Identifier: NCT01826487) ataluren nonsense mutation Duchenne muscular dystrophy clinical trials were retrospectively combined in meta-analyses (intent-to-treat population; for change from baseline to week 48 in 6-min walk distance [6MWD] and timed function tests). Results: Significant improvements in change in 6-min walk distance with deflazacort versus prednisone/prednisolone (least-squares mean difference 39.54 m [95% CI: 13.799, 65.286; p = 0.0026]). Significant and clinically meaningful improvements in 4-stair climb and 4-stair descend for deflazacort versus prednisone/prednisolone. Conclusion: Deflazacort provides clinically meaningful delays in loss of physical milestones over 48 weeks compared with prednisone/prednisolone for patients with nonsense mutation Duchenne muscular dystrophy

    Evolution of dopant-induced helium nanoplasmas

    Get PDF
    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination

    Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    Get PDF
    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena

    Genetic basis of thermal nociceptive sensitivity and brain weight in a BALB/c reduced complexity cross

    Get PDF
    Thermal nociception involves the transmission of temperature-related noxious information from the periphery to the CNS and is a heritable trait that could predict transition to persistent pain. Rodent forward genetics complement human studies by controlling genetic complexity and environmental factors, analysis of end point tissue, and validation of variants on appropriate genetic backgrounds. Reduced complexity crosses between nearly identical inbred substrains with robust trait differences can greatly facilitate unbiased discovery of novel genes and variants. We found BALB/cByJ mice showed enhanced sensitivity on the 53.5°C hot plate and mechanical stimulation in the von Frey test compared to BALB/cJ mice and replicated decreased gross brain weight in BALB/cByJ versus BALB/cJ. We then identified a quantitative trait locus (QTL) on chromosome 13 for hot plate sensitivity (LOD = 10.7; p < 0.001; peak = 56 Mb) and a QTL for brain weight on chromosome 5 (LOD = 8.7; p < 0.001). Expression QTL mapping of brain tissues identified H2afy (56.07 Mb) as the top transcript with the strongest association at the hot plate locus (FDR = 0.0002) and spliceome analysis identified differential exon usage within H2afy associated with the same locus. Whole brain proteomics further supported decreased H2AFY expression could underlie enhanced hot plate sensitivity, and identified ACADS as a candidate for reduced brain weight. To summarize, a BALB/c reduced complexity cross combined with multiple-omics approaches facilitated identification of candidate genes underlying thermal nociception and brain weight. These substrains provide a powerful, reciprocal platform for future validation of candidate variants

    Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    Get PDF
    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.112926Ysciescopu

    An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    Full text link
    We present an all solid-state narrow line-width laser source emitting 670 mW670\,\mathrm{mW} output power at 671 nm671\,\mathrm{nm} delivered in a diffraction-limited beam. The \linebreak source is based on a fre-quency-doubled diode-end-linebreak pumped ring laser operating on the 4F3/2→4I13/2{^4F}_{3/2} \rightarrow {^4I}_{13/2} transition in Nd:YVO4_4. By using periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz100\,\rm GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented

    Hypertension in Holmes County, Mississippi / CAC No. 138

    Get PDF
    Includes bibliographic references (p. 10-11)

    Non-Local Configuration of Component Interfaces by Constraint Satisfaction

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s10601-020-09309-y.Service-oriented computing is the paradigm that utilises services as fundamental elements for developing applications. Service composition, where data consistency becomes especially important, is still a key challenge for service-oriented computing. We maintain that there is one aspect of Web service communication on the data conformance side that has so far escaped the researchers attention. Aggregation of networked services gives rise to long pipelines, or quasi-pipeline structures, where there is a profitable form of inheritance called flow inheritance. In its presence, interface reconciliation ceases to be a local procedure, and hence it requires distributed constraint satisfaction of a special kind. We propose a constraint language for this, and present a solver which implements it. In addition, our approach provides a binding between the language and C++, whereby the assignment to the variables found by the solver is automatically translated into a transformation of C++ code. This makes the C++ Web service context compliant without any further communication. Besides, it uniquely permits a very high degree of flexibility of a C++ coded Web service without making public any part of its source code.Peer reviewe
    • 

    corecore