66 research outputs found

    Overshooting of Clean Tropospheric Air in the Tropical Lower Stratosphere as Seen by the CALIPSO Lidar

    Get PDF
    The evolution of aerosols in the tropical upper troposphere/lower stratosphere between June 2006 and October 2009 is examined using the observations of the space borne CALIOP lidar aboard the CALIPSO satellite. Superimposed on several volcanic plumes and soot from an extreme biomass-burning event in 2009, the measurements reveal the existence of fast cleansing episodes of the lower stratosphere to altitudes as high as 20 km. The cleansing of the full 14-20km layer takes place within 1-4 months. Its coincidence with the maximum of convective activity in the southern tropics, suggests that the cleansing is the result of a large number of overshooting towers, injecting aerosol-poor tropospheric air into the lower stratosphere. The enhancements of aerosols at the tropopause level during the NH summer may be due to the same transport process but associated with intense sources of aerosols at the surface. Since, the tropospheric air flux derived from CALIOP observations during North Hemisphere winter is 5 20 times larger than the slow ascent by radiative heating usually assumed, the observations suggest that convective overshooting is a major contributor to troposphere-to-stratosphere transport with concommitant implications to the Tropical Tropopause Layer top height, chemistry and thermal structure

    SIRTA, a ground-based atmospheric observatory for cloud and aerosol research

    Get PDF
    Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA), an atmospheric observatory with these goals in mind. Today SIRTA, located 20km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO). SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe

    A Diverse Group of Previously Unrecognized Human Rhinoviruses Are Common Causes of Respiratory Illnesses in Infants

    Get PDF
    Human rhinoviruses (HRVs) are the most prevalent human pathogens, and consist of 101 serotypes that are classified into groups A and B according to sequence variations. HRV infections cause a wide spectrum of clinical outcomes ranging from asymptomatic infection to severe lower respiratory symptoms. Defining the role of specific strains in various HRV illnesses has been difficult because traditional serology, which requires viral culture and neutralization tests using 101 serotype-specific antisera, is insensitive and laborious.To directly type HRVs in nasal secretions of infants with frequent respiratory illnesses, we developed a sensitive molecular typing assay based on phylogenetic comparisons of a 260-bp variable sequence in the 5' noncoding region with homologous sequences of the 101 known serotypes. Nasal samples from 26 infants were first tested with a multiplex PCR assay for respiratory viruses, and HRV was the most common virus found (108 of 181 samples). Typing was completed for 101 samples and 103 HRVs were identified. Surprisingly, 54 (52.4%) HRVs did not match any of the known serotypes and had 12-35% nucleotide divergence from the nearest reference HRVs. Of these novel viruses, 9 strains (17 HRVs) segregated from HRVA, HRVB and human enterovirus into a distinct genetic group ("C"). None of these new strains could be cultured in traditional cell lines.By molecular analysis, over 50% of HRV detected in sick infants were previously unrecognized strains, including 9 strains that may represent a new HRV group. These findings indicate that the number of HRV strains is considerably larger than the 101 serotypes identified with traditional diagnostic techniques, and provide evidence of a new HRV group

    On the Use of CALIPSO Land Surface Returns to Retrieve Aerosol and Cloud Optical Depths

    No full text
    International audienceThe quantification of aerosol and cloud radiative properties, optical depth (OD), and phase function is of high importance to quantify the human impact on climate. Several approaches now exist based on both active (lidar) and passive (spectroradiometers) sensors. However, passive space observations over land are hindered by the important contribution of the surface to the total reflectance. Retrievals of OD from backscatter lidars do not face this issue but are usually based on the use of an a priori value of the so-called lidar ratio, which may lead to a significant uncertainty. The objective of this paper is to analyze a possible path for the space borne backscatter lidar onboard the Cloud Aerosol Lidar Pathfinder Observations satellite to overcome those issues. We will discuss the space-borne retrievals of ODs based on the land surface returns, either in combination with the Moderate Resolution Imaging Spectroradiometer or as a stand-alone lidar method. Analyses will be presented for a few cases on different surface types. The different error sources are discussed and further solutions to reduce them are explored. We show that the surface types have different polarization and multispectral properties, which can open new research areas based on space lidars. Using such an approach, we show that a retrieval technique based on the use of lidar land surface returns can be used to directly retrieve OD of aerosols and semitransparent cloud

    Coxsackie group B virus infection and acute diarrhoea occurring among children in Costa Rica.

    No full text
    Although no evidence has been reported linking infection by members of the Coxsackie Group B viruses with the aetiology of endemic diarrhoea, the results of several virological investigations into sporadic outbreaks of this disease have suggested a causal relation between infection by the Coxsackie Group B viruses and the accompanying diarrhoe

    A Synergistic Analysis of Cloud Cover and Vertical Distribution from A-Train and Ground-Based Sensors over the High Arctic Station Eureka from 2006 to 2010

    No full text
    International audienceActive remote sensing instruments such as lidar and radar allow us to accurately detect the presence of clouds and give information on their vertical structure and phase. In order to better address cloud radiative impact over the Arctic area, a combined analysis based on lidar and radar ground-based and A-Train satellite measurements was carried out to evaluate the efficiency of cloud detection, as well as cloud type and vertical distribution, over Eureka (80 °N, 86 °W) between June 2006 and May 2010. CALIPSO and CloudSat data were first compared to the independent ground-based cloud measurements. Seasonal and monthly trends from independent observations were found to be similar amongst all datasets except when compared to the weather station observations, due to the large reported fraction of ice crystals suspended in the lower troposphere in winter. Further investigations focused on satellite observations collocated in space and time with ground-based data. Cloud fraction occurrences from ground-based instruments were well correlated with both CALIPSO operational products and combined CALIPSO-CloudSat retrievals with a hit rate of 85 %. The hit rate was only 77 % for CloudSat products. The misdetections were mainly attributed to a) undetected low-level clouds due to sensitivity loss, and b) missed clouds because of the distance between the satellite track and the station. The spaceborne lidar-radar synergy was found to be essential to have a complete picture of the cloud vertical profile down to 2 km. Errors are quantified and discussed
    corecore