54 research outputs found

    In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities

    Get PDF
    Although tumor-associated macrophages (TAMs) are involved in tumor growth and metastasis, the mechanisms controlling their pro-tumoral activities remain largely unknown. The transcription factor c-MYC has been recently shown to regulate in vitro human macrophage polarization and be expressed in macrophages infiltrating human tumors. In this study, we exploited the predominant expression of LysM in myeloid cells to generate c-Myc(fl/fl) LysM(cre/+) mice, which lack c-Myc in macrophages, to investigate the role of macrophage c-MYC expression in cancer. Under steady-state conditions, immune system parameters in c-Myc(fl/fl) LysM(cre/+) mice appeared normal, including the abundance of different subsets of bone marrow hematopoietic stem cells, precursors and circulating cells, macrophage density, and immune organ structure. In a model of melanoma, however, TAMs lacking c-Myc displayed a delay in maturation and showed an attenuation of pro-tumoral functions (e.g., reduced expression of VEGF, MMP9, and HIF1α) that was associated with impaired tissue remodeling and angiogenesis and limited tumor growth in c-Myc(fl/fl) LysM(cre/+) mice. Macrophage c-Myc deletion also diminished fibrosarcoma growth. These data identify c-Myc as a positive regulator of the pro-tumoral program of TAMs and suggest c-Myc inactivation as an attractive target for anti-cancer therapy

    Impaired LXRα Phosphorylation Attenuates Progression of Fatty Liver Disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a very common indication for liver transplantation. How fat-rich diets promote progression from fatty liver to more damaging inflammatory and fibrotic stages is poorly understood. Here, we show that disrupting phosphorylation at Ser196 (S196A) in the liver X receptor alpha (LXRα, NR1H3) retards NAFLD progression in mice on a high-fat-high-cholesterol diet. Mechanistically, this is explained by key histone acetylation (H3K27) and transcriptional changes in pro-fibrotic and pro-inflammatory genes. Furthermore, S196A-LXRα expression reveals the regulation of novel diet-specific LXRα-responsive genes, including the induction of Ces1f, implicated in the breakdown of hepatic lipids. This involves induced H3K27 acetylation and altered LXR and TBLR1 cofactor occupancy at the Ces1f gene in S196A fatty livers. Overall, impaired Ser196-LXRα phosphorylation acts as a novel nutritional molecular sensor that profoundly alters the hepatic H3K27 acetylome and transcriptome during NAFLD progression placing LXRα phosphorylation as an alternative anti-inflammatory or anti-fibrotic therapeutic target

    Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    Get PDF
    The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to "danger" signals--by-products of damaged, infected or inflamed tissues--via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated by TLRs in hMSC.We demonstrate that TLR3 stimulation activates a Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 1 pathway, and increases expression of suppressor of cytokine signaling (SOCS) 1 and SOCS3 in hMSC. Our studies suggest that each of these SOCS plays a distinct role in negatively regulating TLR3 and JAK/STAT signaling. TLR3-mediated interferon regulatory factor 1 (IRF1) expression was inhibited by SOCS3 overexpression in hMSC while SOCS1 overexpression reduced STAT1 activation. Furthermore, our study is the first to demonstrate that when TLR3 is activated in hMSC, expression of CXCR4 and CXCR7 is downregulated. SOCS3 overexpression inhibited internalization of both CXCR4 and CXCR7 following TLR3 stimulation. In contrast, SOCS1 overexpression only inhibited CXCR7 internalization.These results demonstrate that SOCS1 and SOCS3 each play a functionally distinct role in modulating TLR3, JAK/STAT, and CXCR4/CXCR7 signaling in hMSC and shed further light on the way hMSC respond to danger signals

    Spinal CX3CL1/CX3CR1 may not directly participate in the development of morphine tolerance in rats

    Get PDF
    CX3CL1 (fractalkine), the sole member of chemokine CX3C family, is implicated in inflammatory and neuropathic pain via activating its receptor CX3CR1 on neural cells in spinal cord. However, it has not been fully elucidated whether CX3CL1 or CX3CR1 contributes to the development of morphine tolerance. In this study, we found that chronic morphine exposure did not alter the expressions of CX3CL1 and CX3CR1 in spinal cord. And neither exogenous CX3CL1 nor CX3CR1 inhibitor could affect the development of morphine tolerance. The cellular localizations of spinal CX3CL1 and CX3CR1 changed from neuron and microglia, respectively, to all the neural cells during the development of morphine tolerance. A microarray profiling revealed that 15 members of chemokine family excluding CX3CL1 and CX3CR1 were up-regulated in morphine-treated rats. Our study provides evidence that spinal CX3CL1 and CX3CR1 may not be involved in the development of morphine tolerance directly

    Macrophage biology in development, homeostasis and disease

    Get PDF
    Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases

    BKV-specific T cells in the treatment of severe refractory haemorrhagic cystitis after HLA-haploidentical haematopoietic cell transplantation

    No full text
    Background: Haemorrhagic cystitis caused by BK virus (BKV) is a known complication of allogeneic haematopoietic cell transplantation (HCT) and is relatively common following HLA-haploidentical transplantation. Adoptive immunotransfer of virus-specific T cells from the donor is a promising therapeutic approach, although production of these cells is challenging, particularly when dealing with low-frequency T cells such as BKV-specific T cells. Case report: Here, we present a patient who, following haploidentical HCT, developed severe BKV haemorrhagic cystitis, resistant to standard therapy. He responded well to adoptive transfer of donor cells enriched in BKV-specific T cells using the new second-generation CliniMACS Prodigy and the Cytokine Capture System from Miltenyi Biotec. Treatment led to full resolution of both the symptoms and viraemia without unwanted complications. Conclusion: Our observations suggest that use of products enriched with BKV-specific T cells generated using this system is safe and efficient in HLA-haploidentical HCT where BKV cystitis can be a serious complication

    Peritoneal Dialysis Solutions Inhibit the Differentiation and Maturation of Human Monocyte-derived Dendritic Cells: Effect of Lactate and Glucose-degradation Products

    No full text
    Peritoneal dialysis (PD) is a well-established therapy for end-stage renal failure, but its efficiency is limited by recurrent peritonitis. As PD solutions impair local inflammatory responses within the peritoneal cavity, we have analyzed their influence on the in vitro maturation of human monocyte-derived dendritic cells (MDDC). Evaluation of MDDC maturation parameters [expression of adhesion and costimulatory molecules, receptor-mediated endocytosis, allogeneic T cell activation, production of tumor necrosis factor alpha, interleukin (IL)-6 and IL-12 p70, and nuclear factor (NF)-kappaB activation] revealed that currently used PD solutions differentially inhibit the lipopolysaccharide (LPS)-induced maturation of MDDC, an inhibition that correlated with their ability to impair the LPS-stimulated NF-kappaB activation. Evaluation of PD components revealed that sodium lactate and glucose-degradation products impaired the acquisition of maturation parameters and NF-kappaB activation in a dose-dependent manner. Moreover, PD solutions impaired monocyte-MDDC differentiation, inhibiting the acquisition of DC markers such as CD1a and DC-specific intercellular adhesion molecule-3 grabbing nonintegrin (CD209). These findings have important implications for the initiation of immune responses under high lactate conditions, such as those occurring within tumor tissues or after macrophage activation

    Analysis of hematopoietic recovery after autologous transplantation as method of quality control for long-term progenitor cell cryopreservation.

    No full text
    Hematopoietic precursor cells (HPC) are able to restore hematopoiesis after high-dose chemotherapy and their cryopreservation is routinely employed prior to the autologous hematopoietic cell transplantation (AHCT). Although previous studies showed feasibility of long-term HPC storage, concerns remain about possible negative effects on their potency. To study the effects of long-term cryopreservation, we compared time to neutrophil and platelet recovery in 50 patients receiving two AHCT for multiple myeloma at least 2 years apart between 2006 and 2016, using HPC obtained from one mobilization and collection attempt before the first transplant. This product was divided into equivalent fractions allowing a minimum of 2 × 106 CD34+ cells/kg recipient’s weight. One fraction was used for the first transplant after median storage of 60 days (range, 17–165) and another fraction was used after median storage of 1448 days (range, 849–3510) at the second AHCT. Neutrophil recovery occurred at 14 days (median; range, 11–21) after the first and 13 days (10–20) after the second AHCT. Platelets recovered at a median of 16 days after both procedures. Considering other factors, such as disease status, conditioning and HPC dose, this single institution data demonstrated no reduction in the potency of HPC after long-term storage
    corecore