1,066 research outputs found

    Uneven rate of plant turnover along elevation in grasslands

    Get PDF
    Plant taxonomic and phylogenetic composition of assemblages are known to shift along environmental gradients, but whether the rate of species turnover is regular or not (e.g., accelerations in particular sections of the gradient) remains poorly documented. Understanding how rates of assemblage turnover vary along gradients is crucial to forecast where climate change could promote the fastest changes within extant communities. Here we analysed turnover rates of plant assemblages along a 2500 m elevation gradient in the Swiss Western Alps. We found a peak of turnover rate between 1800 and 2200 m indicating an acceleration of grassland compositional changes at the transition between subalpine and alpine belts. In parallel, we found a peak in phylogenetic turnover rate in Poales between 1700 m and 1900 and Super-Rosids between 1900 and 2300 m. Our results suggest that changes in abiotic or biotic conditions near the human-modified treeline constitute a strong barrier for many grassland plant species, which share analogous elevation range limits. We propose that this vegetation zone of high ecological transitions over short geographical distances should show the fastest community responses to climate change from the breakdown of barrier across ecotones

    Contrasted host specificity of gut and endosymbiont bacterial communities in alpine grasshoppers and crickets.

    Get PDF
    Bacteria colonize the body of macroorganisms to form associations ranging from parasitic to mutualistic. Endosymbiont and gut symbiont communities are distinct microbiomes whose compositions are influenced by host ecology and evolution. Although the composition of horizontally acquired symbiont communities can correlate to host species identity (i.e. harbor host specificity) and host phylogeny (i.e. harbor phylosymbiosis), we hypothesize that the microbiota structure of vertically inherited symbionts (e.g. endosymbionts like Wolbachia) is more strongly associated with the host species identity and phylogeny than horizontally acquired symbionts (e.g. most gut symbionts). Here, using 16S metabarcoding on 336 guts from 24 orthopteran species (grasshoppers and crickets) in the Alps, we observed that microbiota correlated to host species identity, i.e. hosts from the same species had more similar microbiota than hosts from different species. This effect was ~5 times stronger for endosymbionts than for putative gut symbionts. Although elevation correlated with microbiome composition, we did not detect phylosymbiosis for endosymbionts and putative gut symbionts: closely related host species did not harbor more similar microbiota than distantly related species. Our findings indicate that gut microbiota of studied orthopteran species is more correlated to host identity and habitat than to the host phylogeny. The higher host specificity in endosymbionts corroborates the idea that-everything else being equal-vertically transmitted microbes harbor stronger host specificity signal, but the absence of phylosymbiosis suggests that host specificity changes quickly on evolutionary time scales

    Comparison of outcomes in patients with abandoned versus extracted implantable cardioverter defibrillator leads

    Get PDF
    SummaryBackgroundDespite the increased number of implantable cardioverter defibrillator (ICD) recipients and the frequent need for device upgrading and/or occurrence of lead malfunction, the optimal approach to managing abandoned leads remains debated. Aims To determine the rate and type of complications related to either abandoned or extracted ICD leads. Methods Patients with abandoned or extracted leads were identified retrospectively. Patient medical records were reviewed to assess long-term lead or device malfunction, defibrillation test values before and after lead abandonment or extraction, and appropriateness of delivered shocks and subsequent surgical procedures related to devices or leads. Results A total of 58 ICD patients with 47 extracted and 34 abandoned leads were identified. After a mean follow-up of 3.2 ± 2.6 years, the defibrillation test was not affected by either abandoned or extracted leads (23.4 ± 6.6 J vs 25.4 ± 4.9 J, respectively; P = 0.24). There were no differences in the number of ICD-related surgical procedures after extracting versus abandoning leads (22% vs 12%, respectively; P = 0.3) or in the thromboembolic event rate (7.7% vs 6.3%; P = 0.83). During follow-up, no differences in the occurrence of major complications or appropriate/inappropriate shocks were observed between patients with or without abandoned leads. Conclusion We observed no difference in rates of immediate or medium-term complications between extracting versus abandoning leads. Lead abandonment remains an alternative and safe option when extraction does not appear mandatory according to the age of the leads or experience of the operating centre

    Disentangling the processes driving plant assemblages in mountain grasslands across spatial scales and environmental gradients

    Get PDF
    1. Habitat filtering and limiting similarity are well-documented ecological assembly processes that hierarchically filter species across spatial scales, from a regional pool to local assemblages. However, information on the effects of fine-scale spatial partitioning of species, working as an additional mechanism of coexistence, on community patterns, is much scarcer. 2. In this study, we quantified the importance of fine-scale spatial partitioning, relative to habitat filtering and limiting similarity, in structuring grassland communities in the western Swiss Alps. To do so, 298 vegetation plots (2 m × 2 m ) each with five nested subplots (20 cm × 20 cm) were used for trait based assembly tests (i.e. comparisons with several alternative null expectations), examining the observed plot and subplot level α-diversity (indicating habitat filtering and limiting similarity) and the between-subplot β-diversity of traits (indicating fine-scale spatial partitioning). We further assessed variations in the detected signatures of these assembly processes along a set of environmental gradients. 3. We found habitat filtering to be the dominating assembly process at the plot level with diminished effect at the subplot level, while limiting similarity prevailed at the subplot level with weaker average effect at the plot level. Plot-level limiting similarity was positively correlated with fine-scale partitioning suggesting that the trait divergence may result from a combination of competitive exclusion between functionally similar species and environmental micro-heterogeneities. Overall, signatures of assembly processes only marginally changed along environmental gradients but the observed trends were more prominent at the plot than at the subplot scale. Synthesis: Our study emphasises the importance of considering multiple assembly processes and traits simultaneously across spatial scales and environmental gradients to understand the complex drivers of plant community composition

    Trichinella pseudospiralis outbreak in France.

    Get PDF
    Four persons became ill with trichinellosis after eating meat from a wild boar hunted in Camargue, France. Nonencapsulated larvae of Trichinella pseudospiralis were detected in meat and muscle biopsy specimens. The diagnoses were confirmed by molecular typing. Surveillance for the emerging T. pseudospiralis should be expanded

    Catchment-based sampling of river eDNA integrates terrestrial and aquatic biodiversity of alpine landscapes.

    Get PDF
    Monitoring of terrestrial and aquatic species assemblages at large spatial scales based on environmental DNA (eDNA) has the potential to enable evidence-based environmental policymaking. The spatial coverage of eDNA-based studies varies substantially, and the ability of eDNA metabarcoding to capture regional biodiversity remains to be assessed; thus, questions about best practices in the sampling design of entire landscapes remain open. We tested the extent to which eDNA sampling can capture the diversity of a region with highly heterogeneous habitat patches across a wide elevation gradient for five days through multiple hydrological catchments of the Swiss Alps. Using peristaltic pumps, we filtered 60 L of water at five sites per catchment for a total volume of 1800 L. Using an eDNA metabarcoding approach focusing on vertebrates and plants, we detected 86 vertebrate taxa spanning 41 families and 263 plant taxa spanning 79 families across ten catchments. For mammals, fishes, amphibians and plants, the detected taxa covered some of the most common species in the region according to long-term records while including a few more rare taxa. We found marked turnover among samples from distinct elevational classes indicating that the biological signal in alpine rivers remains relatively localised and is not aggregated downstream. Accordingly, species compositions differed between catchments and correlated with catchment-level forest and grassland cover. Biomonitoring schemes based on capturing eDNA across rivers within biologically integrated catchments may pave the way toward a spatially comprehensive estimation of biodiversity

    Improving spatial predictions of taxonomic, functional and phylogenetic diversity

    Get PDF
    In this study, we compare two community modelling approaches to determine their ability to predict the taxonomic, functional and phylogenetic properties of plant assemblages along a broad elevation gradient and at a fine resolution. The first method is the standard stacking individual species distribution modelling (SSDM) approach, which applies a simple environmental filter to predict species assemblages. The second method couples the SSDM and macroecological modelling (MEMSSDM-MEM) approaches to impose a limit on the number of species co-occurring at each site. Because the detection of diversity patterns can be influenced by different levels of phylogenetic or functional trees, we also examine whether performing our analyses from broad to more exact structures in the trees influences the performance of the two modelling approaches when calculating diversity indices. We found that coupling the SSDM with the MEM improves the overall predictions for the three diversity facets compared with those of the SSDM alone. The accuracy of the SSDM predictions for the diversity indices varied greatly along the elevation gradient, and when considering broad to more exact structure in the functional and phylogenetic trees, the SSDM-MEM predictions were more stable. SSDM-MEM moderately but significantly improved the prediction of taxonomic diversity, which was mainly driven by the corrected number of predicted species. The performance of both modelling frameworks increased when predicting the functional and phylogenetic diversity indices. In particular, fair predictions of the taxonomic composition by SSDM-MEM led to increasingly accurate predictions of the functional and phylogenetic indices, suggesting that the compositional errors were associated with species that were functionally or phylogenetically close to the correct ones; however, this did not always hold for the SSDM predictions.Synthesis. In this study, we tested the use of a recently published approach that couples species distribution and macroecological models to provide the first predictions of the distribution of multiple facets of plant diversity: taxonomic, functional and phylogenetic. Moderate but significant improvements were obtained; thus, our results open promising avenues for improving our ability to predict the different facets of biodiversity in space and time across broad environmental gradients when functional and phylogenetic information is available

    Freshwater fish diversity in the western Amazon basin shaped by Andean uplift since the Late Cretaceous

    Full text link
    South America is home to the highest freshwater fish biodiversity on Earth, and the hotspot of species richness is located in the western Amazon basin. The location of this hotspot is enigmatic, as it is inconsistent with the pattern observed in river systems across the world of increasing species richness towards a river’s mouth. Here we investigate the role of river capture events caused by Andean mountain building and repeated episodes of flooding in western Amazonia in shaping the modern-day richness pattern of freshwater fishes in South America, and in Amazonia in particular. To this end, we combine a reconstruction of river networks since 80 Ma with a mechanistic model simulating dispersal, allopatric speciation and extinction over the dynamic landscape of rivers and lakes. We show that Andean mountain building and consequent numerous small river capture events in western Amazonia caused freshwater habitats to be highly dynamic, leading to high diversification rates and exceptional richness. The history of marine incursions and lakes, including the Miocene Pebas mega-wetland system in western Amazonia, played a secondary role
    corecore