79 research outputs found

    Counting function fluctuations and extreme value threshold in multifractal patterns: the case study of an ideal 1/f1/f noise

    Full text link
    To understand the sample-to-sample fluctuations in disorder-generated multifractal patterns we investigate analytically as well as numerically the statistics of high values of the simplest model - the ideal periodic 1/f1/f Gaussian noise. By employing the thermodynamic formalism we predict the characteristic scale and the precise scaling form of the distribution of number of points above a given level. We demonstrate that the powerlaw forward tail of the probability density, with exponent controlled by the level, results in an important difference between the mean and the typical values of the counting function. This can be further used to determine the typical threshold xmx_m of extreme values in the pattern which turns out to be given by xm(typ)=2clnlnM/lnMx_m^{(typ)}=2-c\ln{\ln{M}}/\ln{M} with c=3/2c=3/2. Such observation provides a rather compelling explanation of the mechanism behind universality of cc. Revealed mechanisms are conjectured to retain their qualitative validity for a broad class of disorder-generated multifractal fields. In particular, we predict that the typical value of the maximum pmaxp_{max} of intensity is to be given by lnpmax=αlnM+32f(α)lnlnM+O(1)-\ln{p_{max}} = \alpha_{-}\ln{M} + \frac{3}{2f'(\alpha_{-})}\ln{\ln{M}} + O(1), where f(α)f(\alpha) is the corresponding singularity spectrum vanishing at α=α>0\alpha=\alpha_{-}>0. For the 1/f1/f noise we also derive exact as well as well-controlled approximate formulas for the mean and the variance of the counting function without recourse to the thermodynamic formalism.Comment: 28 pages; 7 figures, published version with a few misprints corrected, editing done and references adde

    Using [C II] 158 μm Emission from Isolated ISM Phases as a Star Formation Rate Indicator

    Get PDF
    The brightest observed emission line in many star-forming galaxies is the [C II] 158 μm line, making it detectable up to z ~ 7. In order to better understand and quantify the [C II] emission as a tracer of star formation, the theoretical ratio between the [N II] 205 μm emission and the [C II] 158 μm emission has been employed to empirically determine the fraction of [C II] emission that originates from the ionized and neutral phases of the interstellar medium (ISM). Sub-kiloparsec measurements of the [C II] 158 μm and [N II] 205 μm lines in nearby galaxies have recently become available as part of the Key Insights in Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) and Beyond the Peak programs. With the information from these two far-infrared lines along with the multi-wavelength suite of KINGFISH data, a calibration of the [C II] emission line as a star formation rate (SFR) indicator and a better understanding of the [C II] deficit are pursued. [C II] emission is also compared to polycyclic aromatic hydrocarbon (PAH) emission in these regions to compare photoelectric heating from PAH molecules to cooling by [C II] in the neutral and ionized phases of the ISM. We find that the [C II] emission originating in the neutral phase of the ISM does not exhibit a deficit with respect to the infrared luminosity and is therefore preferred over the [C II] emission originating in the ionized phase of the ISM as an SFR indicator for the normal star-forming galaxies included in this sample

    Chandra X-ray Observations of the Spiral Galaxy M81

    Full text link
    A Chandra X-Ray Observatory ACIS-S imaging observation is used to study the population of X-ray sources in the nearby Sab galaxy M81 (NGC 3031). A total of 177 sources are detected with 124 located within the D25 isophote to a limiting X-ray luminosity of 3e36 ergs/cm2/s. Source positions, count rates, luminosities in the 0.3-8.0 keV band, limiting optical magnitudes, and potential counterpart identifications are tabulated. Spectral and timing analysis of the 36 brightest sources are reported including the low-luminosity active galactic nucleus, SN 1993J, and the Einstein-discovered ultra-luminous X-ray source X6.Comment: 27 pages, 17 figures, 2 tables, submitted to Ap

    Using [C II] 158 μm Emission from Isolated ISM Phases as a Star Formation Rate Indicator

    Get PDF
    The brightest observed emission line in many star-forming galaxies is the [C II] 158 μm line, making it detectable up to z ~ 7. In order to better understand and quantify the [C II] emission as a tracer of star formation, the theoretical ratio between the [N II] 205 μm emission and the [C II] 158 μm emission has been employed to empirically determine the fraction of [C II] emission that originates from the ionized and neutral phases of the interstellar medium (ISM). Sub-kiloparsec measurements of the [C II] 158 μm and [N II] 205 μm lines in nearby galaxies have recently become available as part of the Key Insights in Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) and Beyond the Peak programs. With the information from these two far-infrared lines along with the multi-wavelength suite of KINGFISH data, a calibration of the [C II] emission line as a star formation rate (SFR) indicator and a better understanding of the [C II] deficit are pursued. [C II] emission is also compared to polycyclic aromatic hydrocarbon (PAH) emission in these regions to compare photoelectric heating from PAH molecules to cooling by [C II] in the neutral and ionized phases of the ISM. We find that the [C II] emission originating in the neutral phase of the ISM does not exhibit a deficit with respect to the infrared luminosity and is therefore preferred over the [C II] emission originating in the ionized phase of the ISM as an SFR indicator for the normal star-forming galaxies included in this sample

    The development of bullying

    No full text

    Hypersexual behavior and attachment styles in a non-clinical sample: The mediation role of depression and post-traumatic stress symptoms

    No full text
    Introduction: Hypersexuality is a complex behavioral dysfunction concerning the excess of sexual activities. In this study, we aim to investigate the role of attachment styles, post-traumatic and depression symptoms in hypersexual behavior. Methods: We recruited through an online platform a snowball convenience sample of 1025 subjects (females: n=731; 71.3%; males: 294; 28.7%; age: 29.62 +/- 10.90) and we administered them a sociodemographic questionnaire, with a psychometric protocol composed by the Hypersexual Behavior Inventory (HBI) to assess hypersexuality, the Relationship Questionnaire (RQ) for the attachment styles, the International Trauma Questionnaire (ITQ) to evaluate the trauma and Patient Health Questionnaire (PHQ) for depression. Results: We found a significant and predictive impact of preoccupied and fearful attachment styles on hypersexual behavior (1)=.116; p<.0001 and 1)=.121p<.0001, respectively). The categorical analysis of RQ confirmed also statistically significant differences between secure attachment style with fearful and preoccupied ones in terms of HBI levels (secure=30.01 +/- 10.79; preoccupied=35.50 +/- 14.46; fearful=36.57 +/- 13.50). Moreover, we found that depression symptoms and the total score of ITQ also resulted predictive for hypersexuality (1)=.323; p<.0001 and 1)=.063; p<.04). However, in our model, depression and post-traumatic symptoms played a mediation role between insecure attachment and hypersexual behavior. Conclusion: This study found a fundamental role of insecure attachment styles, post-traumatic and depression symptoms in the development of problematic sexuality. Hypersexual behavior is related in a causal manner with an insecure attachment style, fearful and preoccupied attachment, particularly. Nevertheless, the traumatic core of personality together with depression symptoms could play a mediation role towards the hypersexual behavior
    corecore