98 research outputs found

    Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice

    Get PDF
    Objective: To examine the role of the balance between interleukin (IL)-1 and IL-1 receptor antagonist (IL-1Ra) in atherosclerosis and vascular inflammation. Methods: Transgenic (Tg) mice overexpressing either secreted IL-1Ra or intracellular IL-1Ra1 as well as IL-1Ra-deficient mice (IL-1Ra −/−) were crossed with apolipoprotein E-deficient mice (ApoE −/−). Results: In males fed a cholesterol-rich diet for 10 weeks, average atherosclerotic lesion area within aortic roots was significantly decreased in ApoE −/− secreted IL-1Ra Tg (−47%) and ApoE −/− intracellular IL-1Ra1 Tg (−40%) mice as compared to ApoE −/− non-Tg controls. The extent of sudanophilic lesions was reduced within the thoraco-abdominal aorta in ApoE −/− secreted IL-1Ra (−53%) and ApoE −/− intracellular IL-1Ra1 (−67%) Tg mice. In parallel experiments, we observed early mortality and illness among double deficient mice, whereas ApoE −/− IL-1Ra +/+ and ApoE +/+ IL-1Ra −/− mice were apparently healthy. After 7 weeks of diet, ApoE −/− IL-1Ra −/− mice exhibited massive aortic inflammation with destruction of the vascular architecture, but no signs of atherosclerosis. ApoE −/− IL-1Ra +/+ had atherosclerosis and a moderate inflammatory reaction, whereas ApoE +/+ IL-1Ra −/− mice were free of vascular lesions. Macrophages were present in large amounts within inflammatory lesions in the adventitia of ApoE −/− IL-1Ra −/− mice. Conclusion: Our results demonstrate that the IL-1/IL-1Ra ratio plays a critical role in the pathogenic mechanisms leading to vascular inflammation and atherosclerosis in ApoE −/− mic

    Statins (HMG-CoA reductase inhibitors) reduce CD40 expression in human vascular cells

    Get PDF
    Objective: HMG-CoA reductase inhibitors (statins) possess anti-inflammatory and immunomodulatory properties that are independent of their lipid-lowering action. As the CD40-CD40L signaling pathway is implicated in the modulation of inflammatory responses between vascular cells, involving adhesion molecules, pro-inflammatory cytokines, chemokines, we sought to investigate the potential role of statins in regulating the expression of CD40. Methods and Results: Using Western blot, flow cytometry and immunohistochemistry analyses, we observed that four different statins reduced IFN-γ-induced CD40 expression in human vascular cells (endothelial cells, smooth muscle cells, macrophages and fibroblasts). This effect was dose-dependent (from 5 μM to 80 nM) and reversed by addition of l-mevalonate. Activation of vascular cells by human recombinant CD40L, as measured by ELISA for IL-6, IL-8 and MCP-1, was strongly reduced when cells were treated with statins. Immunostaining of human carotid atherosclerotic lesions of patients subjected to statin treatment revealed less CD40 expression on a ‘per vascular cell' basis compared to control patients. Although many pleiotropic effects of statins are mediated by nitric oxide synthase (NOS)- or peroxisome proliferator-activated receptor (PPAR)-dependent signaling pathways, we observed similar statin-induced reduction of CD40 expression using NOS inhibitors or different PPAR ligands. Conclusion: Statins decrease CD40 expression and CD40-related activation of vascular cells. These effects are partially reversed by the HMG-CoA reductase product l-mevalonate and are mediated by NOS- or PPAR-dependent pathways. Altogether, these findings provide mechanistic insight into the beneficial effects of statins on atherogenesis. They also provide a scientific rationale for the use of statins as immunomodulators after organ transplantatio

    Endothelial Cx40 limits myocardial ischaemia/reperfusion injury in mice

    Get PDF
    Aims Gap junctions are indispensable for the function of heart and blood vessels by providing electrical coupling and direct cell-to-cell transfer of small signalling molecules. Gap junction channels between neighbouring cells are composed of 12 connexins (Cx). Changes in Cx43 expression, localization, and channel properties in cardiomyocytes contribute to infarction and reperfusion injury of the heart. It is increasingly recognized that deleterious consequences of ischaemia/reperfusion (IR) are modulated by the inflammatory response and endothelial function. The role of the endothelial connexins, i.e. Cx40 and Cx37, in cardiac IR injury is, however, not known. Methods and results Following 30 min ischaemia and 24 h reperfusion, we found a significant increase in myocardial infarct size in mice with endothelial-specific deletion of Cx40 (Cx40del), but not in Cx37-deficient mice. The cardioprotective effect of endothelial Cx40 was associated with a decrease in neutrophil infiltration. Moreover, beneficial effects of endothelial Cx40 were not observed in isolated Langendorff-perfused hearts, suggesting direct involvement of endothelial-leucocyte interactions in the cardiac injury. Single-dose administration of methotrexate, a CD73 activator, reduced infarct size and neutrophil infiltration into the infarcted myocardium in Cx40del but not in control mice. Similar to Cx40del mice, CD73-deficient mice showed increased sensitivity to cardiac IR injury, which could not be conversed by methotrexate. Conclusion Endothelial Cx40, but not Cx37, is implicated in resistance of the heart to IR injury by activation of the CD73 pathway. Thus, the Cx40-CD73 axis may represent an interesting target for controlling reperfusion damage associated with revascularization in coronary diseas

    Improving Reconstituted HDL Composition for Efficient Post-Ischemic Reduction of Ischemia Reperfusion Injury

    Get PDF
    BACKGROUND: New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. Objective The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. Methods and RESULTS: The impact of HDL on IRI was investigated using complementary in vivo , ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo , isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo . In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo , and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo . CONCLUSION: HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte

    CC chemokine CCL5 plays a central role impacting infarct size and post-infarction heart failure in mice

    Get PDF
    Aims The chemokine CCL5 plays a critical role as neutrophil and macrophage activator do in atherosclerosis and myocardial infarction. Thus, we investigated whether the treatment with a neutralizing monoclonal antibody (mAb) to mouse CCL5 would provide therapeutic benefit when provoking a coronary-associated ischaemic event. Methods and Results C57Bl/6 mice were submitted to left coronary artery permanent ligature. Then, various parameters were monitored for up to 21 days. At5 min and 3days after coronary occlusion, mice received one intravenous injection of the rat anti-mouse CCL5 mAb or isotype IgG control. Infarct size was assessed histologically and by measuring serum cardiac troponin I levels. Kinetics of CCL5 tissue expression, leucocyte infiltration, matrix metalloproteinase (MMP) levels, and collagen deposition were histologically assessed. Serum chemokine levels were measured by enzyme-linked immunosorbent assay. Cardiac function and dimensions were assessed by magnetic resonance imaging (MRI). Chronic ischaemia increased both circulating and intracardiac levels of CCL5. At 24 h, treatment with the anti-CCL5 mAb resulted in a smaller infarct size and reduced circulating levels of chemokines. This effect was associated with reduction of neutrophil and macrophage infiltration within the infarcted myocardium. After 3 days of chronic ischaemia, anti-CCL5 mAb treatment reduced cardiac MMP-9. At 7 days, collagen content was significantly lower. At 21 days, neutralizing CCL5 improved mouse survival, cardiac myocyte size, and cardiac function. Conclusion Treatment with anti-CCL5 mAb significantly reduced both infarct size and post-infarction heart failure in a mouse model of chronic cardiac ischaemia. Cardioprotective effects were associated with the reduction of leucocyte recruitment within infarcted heart

    Anti-Apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability

    Get PDF
    Aims Anti-Apolipoprotein A-1 auto-antibodies (anti-ApoA-1 IgG) represent an emerging prognostic cardiovascular marker in patients with myocardial infarction or autoimmune diseases associated with high cardiovascular risk. The potential relationship between anti-ApoA-1 IgG and plaque vulnerability remains elusive. Thus, we aimed to investigate the role of anti-ApoA-1 IgG in plaque vulnerability. Methods and results Potential relationship between anti-ApoA-1 IgG and features of cardiovascular vulnerability was explored both in vivo and in vitro. In vivo, we investigated anti-ApoA-1 IgG in patients with severe carotid stenosis (n = 102) and in ApoE−/− mice infused with polyclonal anti-ApoA-1 IgG. In vitro, anti-ApoA-1 IgG effects were assessed on human primary macrophages, monocytes, and neutrophils. Intraplaque collagen was decreased, while neutrophil and matrix metalloprotease (MMP)-9 content were increased in anti-ApoA-1 IgG-positive patients and anti-ApoA-1 IgG-treated mice when compared with corresponding controls. In mouse aortic roots (but not in abdominal aortas), treatment with anti-ApoA-1 IgG was associated with increased lesion size when compared with controls. In humans, serum anti-ApoA-1 IgG levels positively correlated with intraplaque macrophage, neutrophil, and MMP-9 content, and inversely with collagen. In vitro, anti-ApoA-1 IgG increased macrophage release of CCL2, CXCL8, and MMP-9, as well as neutrophil migration towards TNF-α or CXCL8. Conclusion These results suggest that anti-ApoA-1 IgG might be associated with increased atherosclerotic plaque vulnerability in humans and mic

    Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways

    Get PDF
    Genetic deletion of p66Shc, as shown in the present study, leads to increased myocardial infarction in response to short-term ischaemia and reperfusion. Therefore, heart-specific activation of p66Shc protein may represent a promising novel strategy to prevent ischaemic and reperfusion myocardial injury. In particular, pharmacological modulation of apoptosis via myocardial salvage pathways involving p66Shc might be a promising approach to limit short-term ischaemic injury, for instance in patients with acute coronary syndrome (ACS) from the time of symptom onset to percutaneous coronary intervention. However, the present study also adds complexity to the use of this pathway as a therapeutic target. Indeed, given the different effects of activation and silencing of p66Shc in different cells, tissues and organs, tissue selective inhibition would be required. Indeed, while short-term activation might be protective in the context of an ACS, long-term inhibition may prevent endothelial dysfunction, atherosclerosis, and diabetic vascular disease. Obviously, this complexity also raises safety concerns for the potential use of p66Shc in acute myocardial infarction that need to be clarified by additional researc
    corecore