446 research outputs found
The Emergence and Effectiveness of Global Health Networks: Findings and Future Research
Global health issues vary in the amount of attention and resources they receive. One reason is that the networks of individuals and organizations that address these issues differ in their effectiveness. This article presents key findings from a research project on the emergence and effectiveness of global health networks addressing tobacco use, alcohol harm, maternal mortality, neonatal mortality, tuberculosis and pneumonia. Although networks are only one of many factors influencing priority, they do matter, particularly for shaping the way the problem and solutions are understood, and convincing governments, international organizations and other global actors to address the issue. Their national-level effects vary by issue and are more difficult to ascertain. Networks are most likely to produce effects when (1) their members construct a compelling framing of the issue, one that includes a shared understanding of the problem, a consensus on solutions and convincing reasons to act and (2) they build a political coalition that includes individuals and organizations beyond their traditional base in the health sector, a task that demands engagement in the politics of the issue, not just its technical aspects. Maintaining a focused frame and sustaining a broad coalition are often in tension: effective networks find ways to balance the two challenges. The emergence and effectiveness of a network are shaped both by its members’ decisions and by contextual factors, including historical influences (e.g. prior failed attempts to address the problem), features of the policy environment (e.g. global development goals) and characteristics of the issue the network addresses (e.g. its mortality burden). Their proliferation raises the issue of their legitimacy. Reasons to consider them legitimate include their members’ expertise and the attention they bring to neglected issues. Reasons to question their legitimacy include their largely elite composition and the fragmentation they bring to global health governance
Use of inert gas jets to measure the forces required for mechanical gene transfection
BACKGROUND: Transferring genes and drugs into cells is central to how we now study, identify and treat diseases. Several non-viral gene therapy methods that rely on the mechanical disruption of the plasma membrane have been proposed, but the success of these methods has been limited due to a lack of understanding of the mechanical parameters that lead to cell membrane permeability. METHODS: We use a simple jet of inert gas to induce local transfection of plasmid DNA both in vitro (HeLa cells) and in vivo (chicken chorioallantoic membrane). Five different capillary tube inner diameters and three different gases were used to treat the cells to understand the dependency of transfection efficiency on the dynamic parameters. RESULTS: The simple setup has the advantage of allowing us to calculate the forces acting on cells during transfection. We found permeabilization efficiency was related to the dynamic pressure of the jet. The range of dynamic pressures that led to transfection in HeLa cells was small (200 ± 20 Pa) above which cell stripping occurred. We determined that the temporary pores allow the passage of dextran up to 40 kDa and reclose in less than 5 seconds after treatment. The optimized parameters were also successfully tested in vivo using the chorioallantoic membrane of the chick embryo. CONCLUSIONS: The results show that the number of cells transfected with the plasmid scales with the dynamic pressure of the jet. Our results show that mechanical methods have a very small window in which cells are permeabilized without injury (200 to 290 Pa). This simple apparatus helps define the forces needed for physical cell transfection methods
A Framework on the Emergence and Effectiveness of Global Health Networks
Since 1990 mortality and morbidity decline has been more extensive for some conditions prevalent in low- and middle-income countries than for others. One reason may be differences in the effectiveness of global health networks, which have proliferated in recent years. Some may be more capable than others in attracting attention to a condition, in generating funding, in developing interventions and in convincing national governments to adopt policies. This article introduces a supplement on the emergence and effectiveness of global health networks. The supplement examines networks concerned with six global health problems: tuberculosis (TB), pneumonia, tobacco use, alcohol harm, maternal mortality and newborn deaths. This article presents a conceptual framework delineating factors that may shape why networks crystallize more easily surrounding some issues than others, and once formed, why some are better able than others to shape policy and public health outcomes. All supplement papers draw on this framework. The framework consists of 10 factors in three categories: (1) features of the networks and actors that comprise them, including leadership, governance arrangements, network composition and framing strategies; (2) conditions in the global policy environment, including potential allies and opponents, funding availability and global expectations concerning which issues should be prioritized; (3) and characteristics of the issue, including severity, tractability and affected groups. The article also explains the design of the project, which is grounded in comparison of networks surrounding three matched issues: TB and pneumonia, tobacco use and alcohol harm, and maternal and newborn survival. Despite similar burden and issue characteristics, there has been considerably greater policy traction for the first in each pair. The supplement articles aim to explain the role of networks in shaping these differences, and collectively represent the first comparative effort to understand the emergence and effectiveness of global health networks
Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries
Background:
Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions.
Results:
Through microarray analysis of exponential- and stationary-phase cultures with low and high domoic acid production, respectively, we identified candidate reference genes whose transcripts did not vary across conditions. We tested eleven potential reference genes for stability using RT-qPCR and GeNorm analyses. Our results indicated that transcripts encoding JmjC, dynein, and histone H3 proteins were the most suitable for normalization of expression data under conditions of silicon-limitation, in late-exponential through stationary phase. The microarray studies identified a number of genes that were up- and down-regulated under toxin-producing conditions. RT-qPCR analysis, using the validated controls, confirmed the up-regulation of transcripts predicted to encode a cycloisomerase, an SLC6 transporter, phosphoenolpyruvate carboxykinase, glutamate dehydrogenase, a small heat shock protein, and an aldo-keto reductase, as well as the down-regulation of a transcript encoding a fucoxanthin-chlorophyll a-c binding protein, under these conditions.
Conclusion:
Our results provide a strong basis for further studies of RNA expression levels in Ps-n, which will contribute to our understanding of genes involved in the production and release of domoic acid, an important neurotoxin that affects human health as well as ecosystem function.Plymouth State University Graduate Programs OfficeWoods Hole Oceanographic Institution Academic Programs OfficeNew Hampshire IDeA Network of Biological Research Excellence (NH-INBRE)National Center for Research Resources (U.S.) (Grant 5P20RR030360-03)National Institute of General Medical Sciences (U.S.) (Grant 8P20GM103506-03
Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis
Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3–XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A–dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis
Identifying Critical Roles for the Lamin B Receptor and Additional Nuclear Envelope Proteins in Regulating the Proliferation and Differentiation of Myeloid Progenitors
Neutrophils are blood phagocytes that contain lobulated nuclei, development of which depend on the expression of an inner nuclear membrane (INM) protein called the lamin B receptor (LBR). Loss of LBR expression causes not only hypolobulation of neutrophil nuclei (Pelger-Huët anomaly) but also severe developmental defects in humans (HEM/Greenberg dysplasia) and mice (ichthyosis). LBR is considered a dual function protein: the N-terminal domain contains chromatin and lamin B binding sites, whereas the C-terminal domain anchors LBR to the INM and exhibits C14 sterol reductase activity. Despite our knowledge of these two structural features of LBR, which domain supports normal development is unclear. We recently addressed this issue with regards to myelopoiesis by expressing wild-type and mutant forms of mouse Lbr in myeloid cells derived from an ichthyosis mouse. We demonstrated that expression of the Lbr sterol reductase domain alone can support nuclear morphologic maturation and is critical to both cholesterol biosynthesis and lipid-stressed proliferative responses of myeloid progenitors. In contrast, myeloid progenitors that lack the homologous C14 sterol reductase Tm7sf2 displayed normal nuclear maturation, cholesterol biosynthesis and lipid-stressed proliferation. We have now generated ichthyosis myeloid cells that express forms of Lbr with missense mutations in the sterol reductase domain known to cause HEM/Greenberg dysplasia. Our preliminary results indicate that these sterol reductase missense mutations disrupt cholesterol biosynthesis and lipid-stressed proliferation, but do not appear to affect nuclear maturation. We are also analyzing the expression patterns of Lbr and two additional nuclear envelope (NE) proteins, Lamin A/C and Sun2, during neutrophil vs. macrophage differentiation using both cell line models and ex vivo differentiated mouse bone marrow, and examining how overexpression of either Lamin A/C or Sun2 affects myeloid differentiation. Our studies may reveal new insight into how different NE proteins regulate the complex functions of two professional phagocytes
Landau levels in the case of two degenerate coupled bands: kagome lattice tight-binding spectrum
The spectrum of charged particles hopping on a kagome lattice in a uniform
transverse magnetic field shows an unusual set of Landau levels at low field.
They are unusual in two respects: the lowest Landau levels are paramagnetic so
their energies decrease linearly with increasing field magnitude, and the
spacings between the levels are not equal. These features are shown to follow
from the degeneracy of the energy bands in zero magnetic field. We give a
general discussion of Landau levels in the case of two degenerate bands, and
show how the kagome lattice tight-binding model includes one special case of
this more general problem. We also discuss the consequences of this for the
behavior of the critical temperature of a kagome grid superconducting wire
network, which is the experimental system that originally motivated this work.Comment: 18 pages, 8 figure
Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B
Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites
Le Forum, Vol. 44 #4
https://digitalcommons.library.umaine.edu/francoamericain_forum/1106/thumbnail.jp
- …