512 research outputs found

    Load-Sharing Policies in Parallel Simulation of Agent-Based Demographic Models

    Get PDF
    Execution parallelism in agent-Based Simulation (ABS) allows to deal with complex/large-scale models. This raises the need for runtime environments able to fully exploit hardware parallelism, while jointly offering ABS-suited programming abstractions. In this paper, we target last-generation Parallel Discrete Event Simulation (PDES) platforms for multicore systems. We discuss a programming model to support both implicit (in-place access) and explicit (message passing) interactions across concurrent Logical Processes (LPs). We discuss different load-sharing policies combining event rate and implicit/explicit LPs’ interactions. We present a performance study conducted on a synthetic test case, representative of a class of agent-based models

    Programming agent-based demographic models with cross-state and message-exchange dependencies: A study with speculative PDES and automatic load-sharing

    Get PDF
    Agent-based modeling and simulation is a versatile and promising methodology to capture complex interactions among entities and their surrounding environment. A great advantage is its ability to model phenomena at a macro scale by exploiting simpler descriptions at a micro level. It has been proven effective in many fields, and it is rapidly becoming a de-facto standard in the study of population dynamics. In this article we study programmability and performance aspects of the last-generation ROOT-Sim speculative PDES environment for multi/many-core shared-memory architectures. ROOT-Sim transparently offers a programming model where interactions can be based on both explicit message passing and in-place state accesses. We introduce programming guidelines for systematic exploitation of these facilities in agent-based simulations, and we study the effects on performance of an innovative load-sharing policy targeting these types of dependencies. An experimental assessment with synthetic and real-world applications is provided, to assess the validity of our proposal

    Ecophysiology of Tilia americana under ozone fumigation

    Get PDF
    The negative effects of the pollutant gas ozone are widely studied in many plant species, but the intimate mechanisms of toxicity have not been completely defined. Generally this contaminant or its free radical by–products impair membrane functions, leading to declines in physiological processes, accelerated foliar senescence and premature leaf abscission. Trees of the genus Tilia do not show any foliar injury induced by ozone under natural conditions. In this study, we investigated the effects of this pollutant on ecophysiological and biochemical parameters of T. Americana saplings exposed to a fumigation (120 ppb for 45 consecutive days, 5 h d–1). At the end of treatment, even if plants did not exhibit any visible foliar injury, several parameters were significantly affected: stomatal conductance for water vapor (–15% compared to control), net photosynthesis (–39%), intercellular CO2 concentration (+30%), as well as chlorophyll fluorescence indexes. After 45 days of fumigation neo–, viola– and anteraxanthin content significantly decreased (–25%, –34% and –63%, respectively, in comparison with controls), but no zeaxanthin induction was detected, suggesting that exposure did not activate the xanthopyll cycle. Under these circumstances, this species should be regarded as “middle tolerant/sensitive”

    Ecophysiological and antioxidant traits of Salvia officinalis under ozone stress

    Get PDF
    Ecophysiological and antioxidant traits were evaluated in sage (Salvia officinalis) plants exposed to 120 ppb of ozone for 90 consecutive days (5 h day−1). At the end of fumigation, plants showed slight leaf yellowing that could be considered the first visual symptom of leaf senescence. Ozone-stressed leaves showed (1) reduced photosynthetic activity (−70 % at the end of exposure), (2) chlorophyll loss (−59 and −56 % of chlorophyll a and b concentrations, starting from 30 days from the beginning of exposure), and (3) cellular water deficit (−12 % of the relative water content at the end of the fumigation). These phenomena are indicative of oxidative stress in the chloroplasts (as confirmed by the strong degradation of ÎČ-carotene) despite the photoprotection conferred by xanthophyll cycle [as demonstrated by the significant rise of de-epoxidation index, reaching the maximum value at the end of the treatment (+69 %)], antioxidant compounds [as confirmed by the increase of phenols (in particular caffeic acid and rosmarinic acid)], and water-soluble carbohydrates (especially monosaccharides). By means of combined ecophysiological and biochemical approaches, this study demonstrates that S. officinalis is able to activate an adaptive survival mechanism allowing the plant to complete its life cycle even under oxidative stressful conditions

    Analysis and Optimization of a Demographic Simulator for Parallel Environments

    Get PDF
    In the past years, the advent of multi-core machines has led to the need for adapting current simulation solutions to modern hardware architectures. In this poster, we present a solution to exploit multicore shared-memory capacities in Yades, a parallel tool for running socio-demography dynamic simulations. We propose to abandon the single-threaded programming approach addresses in Yades by using ROOT-Sim, a library which allows to apply discrete event simulation to parallel environments profiting share-memory capabilities. As a result of this new approach, our results show the improvement in Yades’ performance and scalability

    Phenylpropanoids are key players in the antioxidant defense to ozone of European ash, Fraxinus excelsior

    Get PDF
    Physiological and biochemical responses to ozone (O3) (150 ppb, 8 h day−1, 35 consecutive days) of two Italian provenances (Piedmont and Tuscany) of Fraxinus excelsior L. were evaluated, with special attention to the role of phenylpropanoids. Our results indicate (i) the high O3 sensitivity especially of Piedmont provenance (in terms of visible injury, water status, and photosynthetic apparatus); (ii) although the intra-specific sensitivity to O3 between provenances differs (mainly due to different stomatal behaviors since only Tuscany plants partially avoided the uptake of the pollutant gas), both provenances showed detoxification and defense mechanisms; (iii) the crucial participation of phenylpropanoids, with a key role played by flavonoids (especially quercitrin): among this class of metabolites, isoquercitrin is the principal player in the lower O3 sensitivity of Tuscany plants, together with lignins; (iv) although coumarins (typical compounds of Fraxinus) were severely depressed by O3, isofraxidin was triggered suggesting a key role in reactive oxygen species (ROS) detoxification, as well as trans-chalcone. Furthermore, the different behavior of verbascoside and oleuropein among provenances lead us to speculate on their influence in the tentatively repair or acclimation shown by Piedmont plants at the end of the exposure. Finally, the intra-specific O3 sensitivity may be also due to de novo peaks triggered by O3 not yet associated to some chemicals

    Ambient vibrations of age-old masonry towers: results of long-term dynamic monitoring in the historic centre of Lucca

    Get PDF
    The paper presents the results of an ambient vibration monitoring campaign conducted on so-called Clock Tower (Torre delle Ore), one the best known and most visited monuments in the historic centre of Lucca. The vibrations of the tower were continuously monitored from November 2017 to March 2018 using high-sensitivity instrumentation. In particular, four seismic stations provided by the Istituto Nazionale di Geofisica e Vulcanologia and two three-axial accelerometers developed by AGI S.r.l., spin-off of the Istituto Nazionale di Astrofisica, were installed on the tower. The measured vibration level was generally very low, since the structure lies in the middle of a limited traffic area. Nevertheless, the availability of two different types of highly sensitive and accurate instruments allowed the authors to follow the dynamic behaviour of the tower during the entire monitoring period and has moreover provided cross-validation of the results

    A Short-Term Biological Indicator for Long-Term Kidney Damage after Radionuclide Therapy in Mice

    Get PDF
    Folate receptor (FR)-targeted radionuclide therapy using folate radioconjugates is of interest due to the expression of the FR in a variety of tumor types. The high renal accumulation of radiofolates presents, however, a risk of radionephropathy. A potential option to address this challenge would be to use radioprotectants, such as amifostine. Methods for early detection of kidney damage that—in this case—cannot be predicted based on dose estimations, would facilitate the development of novel therapies. The aim of this study was, therefore, to assess potentially changing levels of plasma and urine biomarkers and to determine DNA damage at an early stage after radiofolate application. The identification of an early indicator for renal damage in mice would be useful since histological changes become apparent only several months after treatment. Mice were injected with different quantities of 177Lu-folate (10 MBq, 20 MBq and 30 MBq), resulting in mean absorbed kidney doses of ~23 Gy, ~46 Gy and ~69 Gy, respectively, followed by euthanasia two weeks (>85% of the mean renal radiation dose absorbed) or three months later. Whereas all investigated biomarkers remained unchanged, the number of γ-H2AX-positive nuclei in the renal cortex showed an evident dose-dependent increase as compared to control values two weeks after treatment. Comparison with the extent of kidney injury determined by histological changes five to eight months after administration of the same 177Lu-folate activities suggested that the quantitative assessment of double-strand breaks can be used as a biological indicator for long-term radiation effects in the kidneys. This method may, thus, enable faster assessment of radiopharmaceuticals and protective measures by preventing logistically challenging long-term investigations to detect kidney damage
    • 

    corecore