11 research outputs found

    Sinusoidal obstruction syndrome after liver transplantation: A multicenter observational study

    Get PDF
    Diagnosis of sinusoidal obstruction syndrome (SOS) after hematopoietic cell transplantation (HCT) is based on clinical criteria including weight gain, ascites, hepatomegaly, and jaundice.[1] However, clinical and histological features and prognosis of SOS after liver transplantation (LT) seem to differ from SOS after HCT.[2, 3] We aimed to determine the characteristics and outcomes of SOS after LT

    An Experimental DUAL Model of Advanced Liver Damage

    Get PDF
    Individuals exhibiting an intermediate alcohol drinking pattern in conjunction with signs of metabolic risk present clinical features of both alcohol-associated and metabolic-associated fatty liver diseases. However, such combination remains an unexplored area of great interest, given the increasing number of patients affected. In the present study, we aimed to develop a preclinical DUAL (alcohol-associated liver disease plus metabolic-associated fatty liver disease) model in mice. C57BL/6 mice received 10% vol/vol alcohol in sweetened drinking water in combination with a Western diet for 10, 23, and 52 weeks (DUAL model). Animals fed with DUAL diet elicited a significant increase in body mass index accompanied by a pronounced hypertrophy of adipocytes, hypercholesterolemia, and hyperglycemia. Significant liver damage was characterized by elevated plasma alanine aminotransferase and lactate dehydrogenase levels, extensive hepatomegaly, hepatocyte enlargement, ballooning, steatosis, hepatic cell death, and compensatory proliferation. Notably, DUAL animals developed lobular inflammation and advanced hepatic fibrosis. Sequentially, bridging cirrhotic changes were frequently observed after 12 months. Bulk RNA-sequencing analysis indicated that dysregulated molecular pathways in DUAL mice were similar to those of patients with steatohepatitis. Conclusion: Our DUAL model is characterized by obesity, glucose intolerance, liver damage, prominent steatohepatitis and fibrosis, as well as inflammation and fibrosis in white adipose tissue. Altogether, the DUAL model mimics all histological, metabolic, and transcriptomic gene signatures of human advanced steatohepatitis, and therefore serves as a preclinical tool for the development of therapeutic targets.Supported by EXOHEP-CM (S2017/BMD-3727), Ramón y Cajal (RYC-2014-15242 and RYC-2015-17438), NanoLiver-CM (Y2018/NMT-4949), COST Action (CA17112), AMMF (2018/117), ERAB (EA 18/14), MINECO Retos (SAF2016-78711 and SAF2017-87919-R), and German Research Foundation (DFG NE 2128/2-1, SFB 1382-403224013/A02, and SFB/TRR57/P04). FJC is a Gilead Research Liver Scholar. The research group belongs to the validated Research group Ref. 970935 “Liver Pathophysiology”, 920631 “Lymphocyte immunology”, 920361 “Immunogenética e inmunología de las mucosas” and IBL-6 (imas12-associated). FG and KZ are Chinese Scholarship Council (CSC) fellows. O.E.-V is supported by Beca FPI (associated to MINECO SAF2017-87919R) and R.B.-U. by Contratos predoctorales de personal investigador en formación UCM-Banco Santander (CT63/19)

    Neuroblastoma RAS viral oncogene homolog (N-RAS) deficiency aggravates liver injury and fibrosis.

    Get PDF
    Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease

    An experimental DUAL model of advanced liver damage

    Get PDF
    Individuals exhibiting an intermediate alcohol drinking pattern in conjunction with signs of metabolic risk present clinical features of both alcohol-associated and metabolic-associated fatty liver diseases. However, such combination remains an unexplored area of great interest, given the increasing number of patients affected. In the present study, we aimed to develop a preclinical DUAL (alcohol-associated liver disease plus metabolic-associated fatty liver disease) model in mice. C57BL/6 mice received 10% vol/vol alcohol in sweetened drinking water in combination with a Western diet for 10, 23, and 52 weeks (DUAL model). Animals fed with DUAL diet elicited a significant increase in body mass index accompanied by a pronounced hypertrophy of adipocytes, hypercholesterolemia, and hyperglycemia. Significant liver damage was characterized by elevated plasma alanine aminotransferase and lactate dehydrogenase levels, extensive hepatomegaly, hepatocyte enlargement, ballooning, steatosis, hepatic cell death, and compensatory proliferation. Notably, DUAL animals developed lobular inflammation and advanced hepatic fibrosis. Sequentially, bridging cirrhotic changes were frequently observed after 12 months. Bulk RNA-sequencing analysis indicated that dysregulated molecular pathways in DUAL mice were similar to those of patients with steatohepatitis. Conclusion: Our DUAL model is characterized by obesity, glucose intolerance, liver damage, prominent steatohepatitis and fibrosis, as well as inflammation and fibrosis in white adipose tissue. Altogether, the DUAL model mimics all histological, metabolic, and transcriptomic gene signatures of human advanced steatohepatitis, and therefore serves as a preclinical tool for the development of therapeutic targets

    Sinusoidal obstruction syndrome after liver transplantation: A multicenter observational study

    No full text
    To the editor,Diagnosis of sinusoidal obstruction syndrome (SOS) after hematopoietic cell transplantation (HCT) is based on clinical criteria including weight gain, ascites, he-patomegaly, and jaundice.[1] However, clinical and histological features and prognosis of SOS after liver transplantation (LT) seem to differ from SOS after H CT.[2,3] We aimed to determine the characteristics and outcomes of SOS after LT

    Association of visual and quantitative heterogeneity of 18F-FDG PET images with treatment response in locally advanced rectal cancer: A feasibility study.

    Get PDF
    Background and purposeFew tools are available to predict tumor response to treatment. This retrospective study assesses visual and automatic heterogeneity from 18F-FDG PET images as predictors of response in locally advanced rectal cancer.MethodsThis study included 37 LARC patients who underwent an 18F-FDG PET before their neoadjuvant therapy. One expert segmented the tumor from the PET images. Blinded to the patient¿s outcome, two experts established by consensus a visual score for tumor heterogeneity. Metabolic and texture parameters were extracted from the tumor area. Multivariate binary logistic regression with cross-validation was used to estimate the clinical relevance of these features. Area under the ROC Curve (AUC) of each model was evaluated. Histopathological tumor regression grade was the ground-truth.ResultsStandard metabolic parameters could discriminate 50.1% of responders (AUC = 0.685). Visual heterogeneity classification showed correct assessment of the response in 75.4% of the sample (AUC = 0.759). Automatic quantitative evaluation of heterogeneity achieved a similar predictive capacity (73.1%, AUC = 0.815).ConclusionA response prediction model in LARC based on tumor heterogeneity (assessed either visually or with automatic texture measurement) shows that texture features may complement the information provided by the metabolic parameters and increase prediction accuracy.This work was partially supported by the Spanish Ministry of Economy and Competitiveness (TEC2016–78052-R, PID2019-109820RB-I00) (to AMB) and TEC2013-48251-C2 (to JP), Instituto de Salud Carlos III and European Regional Development Fund (FEDER) Funds from the European Commission, “A way of making Europe” (PI15/02121) and a Leonardo grant to Researchers and Cultural Creators 2017, BBVA Foundation (to AMB). PMG is supported by ‘Beca de Colaboración’ of the Spanish Ministry of Education, Culture and Sports. The CNIC is supported by the Ministry of Economy, Industry and Competitiveness (MEIC) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505)

    An Experimental DUAL Model of Advanced Liver Damage

    No full text
    Individuals exhibiting an intermediate alcohol drinking pattern in conjunction with signs of metabolic risk present clinical features of both alcohol-associated and metabolic-associated fatty liver diseases. However, such combination remains an unexplored area of great interest, given the increasing number of patients affected. In the present study, we aimed to develop a preclinical DUAL (alcohol-associated liver disease plus metabolic-associated fatty liver disease) model in mice. C57BL/6 mice received 10% vol/vol alcohol in sweetened drinking water in combination with a Western diet for 10, 23, and 52 weeks (DUAL model). Animals fed with DUAL diet elicited a significant increase in body mass index accompanied by a pronounced hypertrophy of adipocytes, hypercholesterolemia, and hyperglycemia. Significant liver damage was characterized by elevated plasma alanine aminotransferase and lactate dehydrogenase levels, extensive hepatomegaly, hepatocyte enlargement, ballooning, steatosis, hepatic cell death, and compensatory proliferation. Notably, DUAL animals developed lobular inflammation and advanced hepatic fibrosis. Sequentially, bridging cirrhotic changes were frequently observed after 12 months. Bulk RNA-sequencing analysis indicated that dysregulated molecular pathways in DUAL mice were similar to those of patients with steatohepatitis. Conclusion: Our DUAL model is characterized by obesity, glucose intolerance, liver damage, prominent steatohepatitis and fibrosis, as well as inflammation and fibrosis in white adipose tissue. Altogether, the DUAL model mimics all histological, metabolic, and transcriptomic gene signatures of human advanced steatohepatitis, and therefore serves as a preclinical tool for the development of therapeutic targets.Depto. de Inmunología, Oftalmología y ORLFac. de MedicinaTRUEpu

    Comprehensive Characterization of a Porcine Model of The “Small-for-Flow” Syndrome

    No full text
    Methods We performed subtotal (90%) hepatectomies in 10 female MiniPigs using a simplified transection technique with a tourniquet. Blood tests, hepatic and systemic hemodynamics, and hepatic function and histology were assessed before (Bas), 15 min (t-15 min) and 24 h (t-24 h) after the operation. Some pigs underwent computed tomography (CT) scans for hepatic volumetry (n = 4) and intracranial pressure (ICP) monitoring (n = 3). Postoperative care was performed in an intensive care unit environment. Results All hepatectomies were successfully performed, and hepatic volumetry confirmed liver remnant volumes of 9.2% [6.2–11.2]. The hepatectomy resulted in characteristic hepatic hemodynamic alterations, including portal hyperperfusion, relative decrease of hepatic arterial blood flow, and increased portal pressure (PP) and portal-systemic pressure gradient. The model reproduced major diagnostic features including the development of cholestasis, coagulopathy, encephalopathy with increased ICP, ascites, and renal failure, hyperdynamic circulation, and hyperlactatemia. Two animals (20%) died before t-24 h. Histological liver damage was observed at t-15 min and at t-24 h. The degree of histological damage at t-24 h correlated with intraoperative PP (r = 0.689, p = 0.028), hepatic arterial blood flow (r = 0.655, p = 0.040), and hepatic arterial pulsatility index (r = 0.724, p = 0.066). All animals with intraoperative PP > 20 mmHg presented liver damage at t-24 h. Conclusion The present 90% hepatectomy porcine experimental model is a feasible and reproducible model for investigating the “Small-for-Flow” syndrome.Sociedad Española de Trasplante Hepático (SETH)Instituto de Salud Carlos IIIDepto. de Farmacología y ToxicologíaFac. de VeterinariaTRUEpu
    corecore