230 research outputs found
Resposta da cultura do feijoeiro à adubação nitrogenada e à inoculação com rizóbio.
bitstream/item/67364/1/34249.pdfOrganizado por: Fábio Martins Mercante e Oscar Fontão de Lima Filho. RELARE
Isolamento e seleção de rizóbios de solos de Mato Grosso Do Sul para inoculação em feijoeiro comum
bitstream/item/66207/1/32003.pdfFERTBI
Cenários de desenvolvimento sustentável no Pantanal em função de tendências hidroclimáticas.
Nesta feita uma análise prospectiva do futuro hidrológico do Pantanal sob a perspectiva de dados pretéritos, da mudança do clima com base em relações entre o nível máximo do Rio Paraguai, interação oceano-atmosfera e precipitação na América do Sul. A cenarização hidroclimática, incluindo a componente humana, permite ainda identificar adaptações e oportunidades para as próximas décadas, também em função de mudanças e tendências da economia mundial.bitstream/CPAP-2009-09/56873/1/DOC98.pd
ASC speck formation during cell swelling
©2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This document is the Submitted version of a Published Work that appeared in final form in The Journal of Immunology. To access the final edited and published work see https://doi.org/10.4049/jimmunol.1301676Apoptosis-associated speck-like protein containing a CARD (ASC) is a key adaptor molecule required for inflammatory processes. ASC acts by bridging NLRP proteins, such as NLRP3, with pro-caspase-1 within the inflammasome complex that subsequently results in the activation of caspase-1 and the secretion of interleukin (IL)-1b and IL-18. In response to bacterial infection, ASC also forms specks by self-oligomerization to activate caspase-1 and induce pyroptosis. Hitherto the role of these specks in NLRP3 inflammasome activation in response to danger signals is largely unexplored. Here we report that under hypotonic conditions, ASC formed specks independently of NLRP3 that did not activate caspase-1. These specks were not associated with pyroptosis and were controlled by Transient Receptor Potential Vanilloid 2 channel mediated signaling. However, interaction with NLRP3 enhanced ASC speck formation leading to fully functional inflammasomes and caspase-1 activation. This study reveals that the ASC speck could present different oligomerization assemblies and represents an essential step in the activation of functional NLRP3 inflammasomes
Identification of an ASC oligomerization inhibitor for the treatment of inflammatory diseases
The ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD)) protein is an scaffold component of different inflammasomes, intracellular multiprotein platforms of the innate immune system that are activated in response to pathogens or intracellular damage. The formation of ASC specks, initiated by different inflammasome receptors, promotes the recruitment and activation of procaspase-1, thereby triggering pyroptotic inflammatory cell death and pro-inflammatory cytokine release. Here we describe MM01 as the first-in-class small-molecule inhibitor of ASC that interferes with ASC speck formation. MM01 inhibition of ASC oligomerization prevents activation of procaspase-1 in vitro and inhibits the activation of different ASC-dependent inflammasomes in cell lines and primary cultures. Furthermore, MM01 inhibits inflammation in vivo in a mouse model of inflammasome-induced peritonitis. Overall, we highlight MM01 as a novel broad-spectrum inflammasome inhibitor for the potential treatment of multifactorial diseases involving the dysregulation of multiple inflammasomes
Genetic Ablation of Pannexin1 Protects Retinal Neurons from Ischemic Injury
Pannexin1 (Panx1) forms large nonselective membrane channel that is implicated in paracrine and inflammatory signaling. In vitro experiments suggested that Panx1 could play a key role in ischemic death of hippocampal neurons. Since retinal ganglion cells (RGCs) express high levels of Panx1 and are susceptible to ischemic induced injury, we hypothesized that Panx1 contributes to rapid and selective loss of these neurons in ischemia. To test this hypothesis, we induced experimental retinal ischemia followed by reperfusion in live animals with the Panx1 channel genetically ablated either in the entire mouse (Panx1 KO), or only in neurons using the conditional knockout (Panx1 CKO) technology. Here we report that two distinct neurotoxic processes are induced in RGCs by ischemia in the wild type mice but are inactivated in Panx1KO and Panx1 CKO animals. First, the post-ischemic permeation of RGC plasma membranes is suppressed, as assessed by dye transfer and calcium imaging assays ex vivo and in vitro. Second, the inflammasome-mediated activation of caspase-1 and the production of interleukin-1β in the Panx1 KO retinas are inhibited. Our findings indicate that post-ischemic neurotoxicity in the retina is mediated by previously uncharacterized pathways, which involve neuronal Panx1 and are intrinsic to RGCs. Thus, our work presents the in vivo evidence for neurotoxicity elicited by neuronal Panx1, and identifies this channel as a new therapeutic target in ischemic pathologies
Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa
There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit
Interactions between Naïve and Infected Macrophages Reduce Mycobacterium tuberculosis Viability
A high intracellular bacillary load of Mycobacterium tuberculosis in macrophages induces an atypical lysosomal cell death with early features of apoptosis that progress to necrosis within hours. Unlike classical apoptosis, this cell death mode does not appear to diminish M. tuberculosis viability. We previously reported that culturing heavily infected macrophages with naïve macrophages produced an antimicrobial effect, but only if naïve macrophages were added during the pre-necrotic phase of M. tuberculosis-induced cell death. In the present study we investigated the mechanism of antimicrobial activity in co-cultures, anticipating that efferocytosis of bacilli in apoptotic bodies would be required. Confocal microscopy revealed frustrated phagocytosis of M. tuberculosis-infected macrophages with no evidence that significant numbers of bacilli were transferred to the naïve macrophages. The antimicrobial effect of naïve macrophages was retained when they were separated from infected macrophages in transwells, and conditioned co-culture supernatants transferred antimicrobial activity to cultures of infected macrophages alone. Antimicrobial activity in macrophage co-cultures was abrogated when the naïve population was deficient in IL-1 receptor or when the infected population was deficient in inducible nitric oxide synthase. The participation of nitric oxide suggested a conventional antimicrobial mechanism requiring delivery of bacilli to a late endosomal compartment. Using macrophages expressing GFP-LC3 we observed the induction of autophagy specifically by a high intracellular load of M. tuberculosis. Bacilli were identified in LC3-positive compartments and LC3-positive compartments were confirmed to be acidified and LAMP1 positive. Thus, the antimicrobial effect of naïve macrophages acting on M. tuberculosis in heavily-infected macrophages is contact-independent. Interleukin-1 provides an afferent signal that induces an as yet unidentified small molecule which promotes nitric oxide-dependent antimicrobial activity against bacilli in autolysosomes of heavily infected macrophages. This cooperative, innate antimicrobial interaction may limit the maximal growth rate of M. tuberculosis prior to the expression of adaptive immunity in pulmonary tuberculosis
Inert coupling of IRDye800CW to monoclonal antibodies for clinical optical imaging of tumor targets
Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas
- …